Local High Pressure Torsion: a process for creating targeted heterogeneities in metallic materials

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
E. Beygelzimer, O. Davydenko, Y. Beygelzimer, Y. Tereshchenko, V. Bondarchuk, V. Shyvaniuk, R. Fataiev, I. Shapiro, V. Balakin, N. Biba, D. Orlov
{"title":"Local High Pressure Torsion: a process for creating targeted heterogeneities in metallic materials","authors":"E. Beygelzimer,&nbsp;O. Davydenko,&nbsp;Y. Beygelzimer,&nbsp;Y. Tereshchenko,&nbsp;V. Bondarchuk,&nbsp;V. Shyvaniuk,&nbsp;R. Fataiev,&nbsp;I. Shapiro,&nbsp;V. Balakin,&nbsp;N. Biba,&nbsp;D. Orlov","doi":"10.1007/s12289-025-01879-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the light of recent developments in the design of structural materials, micro-architected heterogenous-structure metals are considered among most structurally efficient. In this work, a new technique for Local High Pressure Torsion (L-HPT) enabling the creation of heterogeneous structures through localised deformation processing in sheet metals by impeding a rotating punch is proposed. Using AA5083 aluminium alloy as an example, we show experimentally that the rotation of the punch sets adjacent material layers in motion. This results in more than two-fold increase in material hardness over initial level in the workpiece bulk with rather sharp gradients in hardness level transition. The maximum hardness is observed at the peripheral edge of a punch tip. Finite-element modelling of the L-HPT process confirmed that the rotational flow of workpiece material leads to the accumulation of shear strain. The level of accumulated strain increases with an increase in friction at the contact surface. Further analysis based on dimensionality theory revealed that for such an L-HPT configuration the level of equivalent strain is directly proportional to the ratio of rotation-to-translation speeds at the punch.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01879-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01879-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In the light of recent developments in the design of structural materials, micro-architected heterogenous-structure metals are considered among most structurally efficient. In this work, a new technique for Local High Pressure Torsion (L-HPT) enabling the creation of heterogeneous structures through localised deformation processing in sheet metals by impeding a rotating punch is proposed. Using AA5083 aluminium alloy as an example, we show experimentally that the rotation of the punch sets adjacent material layers in motion. This results in more than two-fold increase in material hardness over initial level in the workpiece bulk with rather sharp gradients in hardness level transition. The maximum hardness is observed at the peripheral edge of a punch tip. Finite-element modelling of the L-HPT process confirmed that the rotational flow of workpiece material leads to the accumulation of shear strain. The level of accumulated strain increases with an increase in friction at the contact surface. Further analysis based on dimensionality theory revealed that for such an L-HPT configuration the level of equivalent strain is directly proportional to the ratio of rotation-to-translation speeds at the punch.

局部高压扭转:一种在金属材料中产生目标非均质性的过程
根据结构材料设计的最新发展,微结构异质结构金属被认为是结构效率最高的材料之一。在这项工作中,提出了一种新的局部高压扭转(L-HPT)技术,通过阻碍旋转冲床在金属板中进行局部变形处理,从而产生非均质结构。以AA5083铝合金为例,实验证明了冲床的旋转会引起相邻材料层的运动。这导致材料硬度比工件初始水平增加两倍以上,在硬度水平过渡中有相当尖锐的梯度。最大的硬度是在冲孔尖端的外围边缘观察到的。L-HPT过程的有限元模拟证实了工件材料的旋转流动导致剪切应变的积累。累积应变水平随着接触面摩擦的增加而增加。基于量纲理论的进一步分析表明,对于这种L-HPT结构,等效应变水平与冲头的旋转与平移速度之比成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信