Foundations of Chemistry最新文献

筛选
英文 中文
The case of Zinjafr in the medical and mineralogical texts of medieval Persia: a puzzle created in the absence of the concept of chemical elements 中世纪波斯医学和矿物学文献中的Zinjafr案例:在缺乏化学元素概念的情况下创造的谜题
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-07-13 DOI: 10.1007/s10698-022-09436-9
Nazila Farmani Anooshe, Aliyar Mousavi
{"title":"The case of Zinjafr in the medical and mineralogical texts of medieval Persia: a puzzle created in the absence of the concept of chemical elements","authors":"Nazila Farmani Anooshe,&nbsp;Aliyar Mousavi","doi":"10.1007/s10698-022-09436-9","DOIUrl":"10.1007/s10698-022-09436-9","url":null,"abstract":"<div><p>An examination of some of the writings in the medical and mineralogical texts of Persia in the Middle Ages, written in the Arabic language during the caliphate period, revealed an inconsistency concerning the modern chemical identity of the substance called <i>zinjafr</i>, which was recognized as a medication for wounds, burns, mange, and cavities. Although some of the literature identified it as the important ore cinnabar (red mercury(II) sulfide), some questioned that identification or even ambiguously described it as a substance produced from lead. A modern chemical study was conducted and identified the latter substance as minium (trilead tetraoxide). The reason for the medieval authors not distinguishing between those two compounds is discussed and the fact that the dictionaries of modern written Arabic commonly have the words <i>zinjafr</i> and <i>cinnabar</i> listed as equivalents is also explored. Further, the ability of Arabic alchemy to distinguish between cinnabar and minium is assessed in light of modern chemistry.</p><h3>Graphical abstract</h3><p>A 1973 Soviet postage stamp celebrating the 1000th anniversary of al-Biruni’s birth (https://sl.wikipedia.org/wiki/Slika:Biruni-russian.jpg).</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 2","pages":"277 - 284"},"PeriodicalIF":0.9,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4540343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical reactivity: cause-effect or interaction? 化学反应性:因果关系还是相互作用?
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-07-06 DOI: 10.1007/s10698-022-09430-1
Alfio Zambon
{"title":"Chemical reactivity: cause-effect or interaction?","authors":"Alfio Zambon","doi":"10.1007/s10698-022-09430-1","DOIUrl":"10.1007/s10698-022-09430-1","url":null,"abstract":"<div><p>From the perspective of successive events, chemical reactions are expressed or thought about, in terms of the cause-effect category. In this work, I will firstly discuss some aspects of causation and interaction in chemistry, argue for the interaction, and propose an alternative or complementary representation scheme called “interaction diagram”, that allows representing chemical reactions through a geometric diagram. The understanding of this diagram facilitates the analysis of reactions in terms of the interaction, or reciprocal action, among the participating entities. Secondly, I will describe the model and provide examples and finally, I will discuss the scope and limitations of the current development status of the model.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"375 - 387"},"PeriodicalIF":0.9,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4583086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
In praise of triads 赞美三合会
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-06-16 DOI: 10.1007/s10698-022-09434-x
Eric R. Scerri
{"title":"In praise of triads","authors":"Eric R. Scerri","doi":"10.1007/s10698-022-09434-x","DOIUrl":"10.1007/s10698-022-09434-x","url":null,"abstract":"<div><p>The article begins with a response to a recent contribution by Jensen, in which he has criticized several aspects of the use of triads of elements, including Döbereiner’s original introduction of the concept and the modern use of atomic number triads by some authors including myself. Such triads are groups of three elements, one of which has approximately the average atomic weight of the other two elements, as well as having intermediate chemical reactivity. I also examine Jensen’s attempted reconstruction Mendeleev’s use of triads in predicting the atomic weights of three hitherto unknown elements, that were subsequently named gallium, germanium and scandium. The present article then considers the use of atomic number triads, in conjunction with the phenomenon of first member anomaly, in order to offer support for Janet’s left-step periodic table, in which helium is relocated into group 2 of the table. Such a table features triads in which the 2nd and third elements of each group, without fail, fall into periods of equal length, a feature that is absent in the conventional 18-column or the conventional 32-column table. The dual sense of the term element, which is the source of much discussion in the philosophy of chemistry, is alluded to in further support of such a relocation of helium that may at first appear to contradict chemical intuition.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 2","pages":"285 - 300"},"PeriodicalIF":0.9,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-022-09434-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4651745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Philosophical grounds for designing invisible molecules 设计隐形分子的哲学基础
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-06-04 DOI: 10.1007/s10698-022-09433-y
Hirofumi Ochiai
{"title":"Philosophical grounds for designing invisible molecules","authors":"Hirofumi Ochiai","doi":"10.1007/s10698-022-09433-y","DOIUrl":"10.1007/s10698-022-09433-y","url":null,"abstract":"<div><p>‘Structure’ is the term whose proper use is exemplified by an expression like ‘the structure of a diesel-engine,’ in which what is referred to is accessible to immediate observation. It is also used figuratively like ‘social structure.’ While unobservable, what is referred to is empirically accessible. By contrast, molecules are neither observable nor empirically accessible. What philosophical grounds enable us to design invisible structure of molecules? Our cognition of objects becomes realized as phenomena when objects are given to our phenomenal fields. (Ochiai, Found Chem 22:77–86, 2020a, Found Chem 22:457–465, 2020b, A philosophical essay on molecular structure, Cambridge Scholars Publishing, Newcastle upon Tyne, pp 147–174, 2021) A phenomenal field is a pictorial representation of the mind’s self-transcending character and shows the relation between ‘self’ and ‘world.’ Molecular structure becomes realized as an affordance of molecules in a phenomenal field proper to organic chemists. It is a context-sensitive dispositional attribute of an {organic chemist-world} complex. Although designing molecules presupposes molecular structure, the latter is not sufficient for the former to make sense. Molecules must be designable as well. Designing molecules aims to create or modify molecular structure in order to provide compounds with certain chemical and/or physical properties. That is, designable molecules make sense in contexts in which they serve as a means to achieve this purpose and become realized as an affordance. Given that molecular structure and designable molecules are affordances of molecules, the fact that there are contexts in which they make sense provides grounds for conceiving and designing invisible structure of molecules. Heidegger’s arguments in <i>Being and Time</i> about characteristics of the being of beings corroborate our argument that what becomes realized as an affordance exists as what he calls a useful thing for us.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"25 1","pages":"141 - 149"},"PeriodicalIF":0.9,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4170446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Robert Boyle and the relational and dispositional nature of chemical properties 罗伯特·波义耳和化学性质的关系和性质
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-06-03 DOI: 10.1007/s10698-022-09435-w
Marina Paola Banchetti-Robino
{"title":"Robert Boyle and the relational and dispositional nature of chemical properties","authors":"Marina Paola Banchetti-Robino","doi":"10.1007/s10698-022-09435-w","DOIUrl":"10.1007/s10698-022-09435-w","url":null,"abstract":"<div><p>This paper establishes that Robert Boyle’s complex chemical ontology implies a non-reductionistic conception of chemical qualities and, more specifically, a conception of chemical qualities as being dispositional and relational. Though Peter Anstey has already shown that that Boyle considered sensible qualities to be dispositional and relational, this moves beyond Anstey’s work by extending his arguments to chemical properties. These arguments are, however, merely a first step in establishing a non-reductionistic interpretation of Boyle’s chemical ontology. A further argument will show that Boyle regards chemical and other higher-level properties as being emergent and supervenient properties. These arguments are supported by substantial textual evidence from Boyle’s writings, which show that he clearly conceived of chemical substances as functional wholes whose properties emerge not only from the microstructural ordering of their parts but also from their relationship with other chemical substances within the context of experimental practice.\u0000</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"423 - 431"},"PeriodicalIF":0.9,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4128157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hasok Chang on the nature of acids Hasok Chang关于酸的性质
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-05-31 DOI: 10.1007/s10698-022-09432-z
Eric R. Scerri
{"title":"Hasok Chang on the nature of acids","authors":"Eric R. Scerri","doi":"10.1007/s10698-022-09432-z","DOIUrl":"10.1007/s10698-022-09432-z","url":null,"abstract":"<div><p>For a period of several years the philosopher of science Hasok Chang has promoted various inter-related views including pluralism, pragmatism, and an associated view of natural kinds. He has also argued for what he calls the persistence of everyday terms in the scientific view. Chang claims that terms like phlogiston were never truly abandoned but became transformed into different concepts that remain useful. On the other hand, Chang argues that some scientific terms such as acidity have suffered a form of “rupture”, especially in the case of the modern Lewis definition of acids. Chang also complains that the degree of acidity of a Lewis acid cannot be measured using a pH meter and seems to regard this as a serious problem. The present paper examines some of these views, especially what Chang claims to be a rupture in the definition of acidity. It is suggested that there has been no such rupture but a genuine generalization, on moving from the Brønsted-Lowry theory to the Lewis theory of acidity. It will be shown how the quantification and measurement of Lewis acidity can easily be realized through the use of equilibrium theory and the use of stability constants.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"389 - 404"},"PeriodicalIF":0.9,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-022-09432-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5185331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the nature of quantum-chemical entities: the case of electron density 论量子化学实体的性质:以电子密度为例
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-05-17 DOI: 10.1007/s10698-022-09431-0
Jesus Alberto Jaimes Arriaga
{"title":"On the nature of quantum-chemical entities: the case of electron density","authors":"Jesus Alberto Jaimes Arriaga","doi":"10.1007/s10698-022-09431-0","DOIUrl":"10.1007/s10698-022-09431-0","url":null,"abstract":"<div><p>An Aristotelian philosophy of nature offers an alternative to reduction for the conception of the inter-theoretical relationships between molecular chemistry and quantum mechanics. A basic ingredient for such an approach is an ontology of fundamental causal powers, and this work aims to develop such an ontology by drawing on quantum-chemical entities, particularly, the <i>electron density</i>. This notion is central to the Quantum Theory of Atoms in Molecules, a theory of molecular structure developed by Richard F. W. Bader, which describes molecules and atoms in terms precisely of the electron density. Then, by identifying a philosophical tension in Bader’s discourse about the nature of electron density, the work will analyze this central notion in terms of the categorical/dispositional distinction regarding properties. The central idea is that electron density can be conceived as categorical and dispositional at once, and this very characterization can avoid Bader’s philosophical tension.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"25 1","pages":"127 - 139"},"PeriodicalIF":0.9,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4696675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum algorithms for simulation of quantum chemistry problems by quantum computers: an appraisal 用量子计算机模拟量子化学问题的量子算法:评价
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-05-15 DOI: 10.1007/s10698-022-09428-9
Smriti Sharma
{"title":"Quantum algorithms for simulation of quantum chemistry problems by quantum computers: an appraisal","authors":"Smriti Sharma","doi":"10.1007/s10698-022-09428-9","DOIUrl":"10.1007/s10698-022-09428-9","url":null,"abstract":"<div><p>The ideas of quantum simulation and advances in quantum algorithms to solve quantum chemistry problems have been discussed. Theoretical proposals and experimental investigations both have been studied to gauge the extent to which quantum computation has been applied to solve quantum chemical problems till date. The distinctive features and limitations of the application of quantum simulation on chemical systems and current approaches to define and improve upon standard quantum algorithms have been studied in detail. The possibility and consequences of designing an efficient quantum computer that can address chemical problems have been assessed. The experimental realization of quantum supremacy defies the conventional belief of chemists, that millions of qubits would be required to solve fundamental chemistry problems. It is predicted that quantum simulation of quantum chemistry problems will radically revolutionize this field.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 2","pages":"263 - 276"},"PeriodicalIF":0.9,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4623109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial 70 (the platinum issue) 社论第70期(白金版)
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-05-05 DOI: 10.1007/s10698-022-09429-8
Eric Scerri
{"title":"Editorial 70 (the platinum issue)","authors":"Eric Scerri","doi":"10.1007/s10698-022-09429-8","DOIUrl":"10.1007/s10698-022-09429-8","url":null,"abstract":"","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 1","pages":"1 - 2"},"PeriodicalIF":0.9,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4225034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving student success in chemistry through cognitive science 通过认知科学提高学生在化学方面的成功
IF 0.9 3区 化学
Foundations of Chemistry Pub Date : 2022-04-21 DOI: 10.1007/s10698-022-09427-w
JudithAnn R. Hartman, Eric A. Nelson, Paul A. Kirschner
{"title":"Improving student success in chemistry through cognitive science","authors":"JudithAnn R. Hartman,&nbsp;Eric A. Nelson,&nbsp;Paul A. Kirschner","doi":"10.1007/s10698-022-09427-w","DOIUrl":"10.1007/s10698-022-09427-w","url":null,"abstract":"<div><p>Chemistry educator Alex H. Johnstone is perhaps best known for his insight that chemistry is best explained using macroscopic, submicroscopic, and symbolic perspectives. But in his writings, he stressed a broader thesis, namely that teaching should be guided by scientific research on how the brain learns: cognitive science. Since Johnstone’s retirement, science’s understanding of learning has progressed rapidly. A surprising discovery has been when solving chemistry problems of any complexity, reasoning does not work: students must apply very-well-memorized facts and algorithms. Following Johnstone’s advice, we review recent discoveries of cognitive science research. Instructional strategies are recommended that cognitive studies have shown help students learn chemistry.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 2","pages":"239 - 261"},"PeriodicalIF":0.9,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-022-09427-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4814284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信