{"title":"用量子计算机模拟量子化学问题的量子算法:评价","authors":"Smriti Sharma","doi":"10.1007/s10698-022-09428-9","DOIUrl":null,"url":null,"abstract":"<div><p>The ideas of quantum simulation and advances in quantum algorithms to solve quantum chemistry problems have been discussed. Theoretical proposals and experimental investigations both have been studied to gauge the extent to which quantum computation has been applied to solve quantum chemical problems till date. The distinctive features and limitations of the application of quantum simulation on chemical systems and current approaches to define and improve upon standard quantum algorithms have been studied in detail. The possibility and consequences of designing an efficient quantum computer that can address chemical problems have been assessed. The experimental realization of quantum supremacy defies the conventional belief of chemists, that millions of qubits would be required to solve fundamental chemistry problems. It is predicted that quantum simulation of quantum chemistry problems will radically revolutionize this field.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 2","pages":"263 - 276"},"PeriodicalIF":1.8000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum algorithms for simulation of quantum chemistry problems by quantum computers: an appraisal\",\"authors\":\"Smriti Sharma\",\"doi\":\"10.1007/s10698-022-09428-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ideas of quantum simulation and advances in quantum algorithms to solve quantum chemistry problems have been discussed. Theoretical proposals and experimental investigations both have been studied to gauge the extent to which quantum computation has been applied to solve quantum chemical problems till date. The distinctive features and limitations of the application of quantum simulation on chemical systems and current approaches to define and improve upon standard quantum algorithms have been studied in detail. The possibility and consequences of designing an efficient quantum computer that can address chemical problems have been assessed. The experimental realization of quantum supremacy defies the conventional belief of chemists, that millions of qubits would be required to solve fundamental chemistry problems. It is predicted that quantum simulation of quantum chemistry problems will radically revolutionize this field.</p></div>\",\"PeriodicalId\":568,\"journal\":{\"name\":\"Foundations of Chemistry\",\"volume\":\"24 2\",\"pages\":\"263 - 276\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10698-022-09428-9\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10698-022-09428-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Quantum algorithms for simulation of quantum chemistry problems by quantum computers: an appraisal
The ideas of quantum simulation and advances in quantum algorithms to solve quantum chemistry problems have been discussed. Theoretical proposals and experimental investigations both have been studied to gauge the extent to which quantum computation has been applied to solve quantum chemical problems till date. The distinctive features and limitations of the application of quantum simulation on chemical systems and current approaches to define and improve upon standard quantum algorithms have been studied in detail. The possibility and consequences of designing an efficient quantum computer that can address chemical problems have been assessed. The experimental realization of quantum supremacy defies the conventional belief of chemists, that millions of qubits would be required to solve fundamental chemistry problems. It is predicted that quantum simulation of quantum chemistry problems will radically revolutionize this field.
期刊介绍:
Foundations of Chemistry is an international journal which seeks to provide an interdisciplinary forum where chemists, biochemists, philosophers, historians, educators and sociologists with an interest in foundational issues can discuss conceptual and fundamental issues which relate to the `central science'' of chemistry. Such issues include the autonomous role of chemistry between physics and biology and the question of the reduction of chemistry to quantum mechanics. The journal will publish peer-reviewed academic articles on a wide range of subdisciplines, among others: chemical models, chemical language, metaphors, and theoretical terms; chemical evolution and artificial self-replication; industrial application, environmental concern, and the social and ethical aspects of chemistry''s professionalism; the nature of modeling and the role of instrumentation in chemistry; institutional studies and the nature of explanation in the chemical sciences; theoretical chemistry, molecular structure and chaos; the issue of realism; molecular biology, bio-inorganic chemistry; historical studies on ancient chemistry, medieval chemistry and alchemy; philosophical and historical articles; and material of a didactic nature relating to all topics in the chemical sciences. Foundations of Chemistry plans to feature special issues devoted to particular themes, and will contain book reviews and discussion notes. Audience: chemists, biochemists, philosophers, historians, chemical educators, sociologists, and other scientists with an interest in the foundational issues of science.