{"title":"Theodore Richards and the discovery of isotopes","authors":"K. Brad Wray","doi":"10.1007/s10698-022-09449-4","DOIUrl":"10.1007/s10698-022-09449-4","url":null,"abstract":"<div><p>I challenge Gareth Eaton’s recent claim that Theodore Richards should be counted among the discoverers of isotopes. In evaluating Eaton’s claim, I draw on two influential theories of scientific discovery, one developed by Thomas Kuhn, and one developed by Augustine Brannigan. I argue that though Richards’ experimental work contributed to the discovery, his work does not warrant attributing the discovery to him. Richards’ reluctance to acknowledge isotopes is well document. Further, the fact that he made no claim to having made the discovery also undermines Eaton’s argument.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"25 1","pages":"57 - 66"},"PeriodicalIF":0.9,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4279262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A case for the engagement between the sciences and the humanities. Jay A. Labinger’s: Connecting Literature and Science. New York: Routledge, 2022","authors":"Jeffrey I. Seeman","doi":"10.1007/s10698-022-09440-z","DOIUrl":"10.1007/s10698-022-09440-z","url":null,"abstract":"","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"363 - 373"},"PeriodicalIF":0.9,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-022-09440-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5099934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Book review of Paul Sen’s, “Einstein’s Fridge. How the difference between hot and cold explains the universe” ISBN: 978-1-5011-8130-6","authors":"Robert T. Hanlon","doi":"10.1007/s10698-022-09446-7","DOIUrl":"10.1007/s10698-022-09446-7","url":null,"abstract":"","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"25 2","pages":"337 - 338"},"PeriodicalIF":0.9,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5108753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-periodic table of periodicities and periodic table with additional periodicities: tetrad periodicity","authors":"Naum S. Imyanitov","doi":"10.1007/s10698-022-09437-8","DOIUrl":"10.1007/s10698-022-09437-8","url":null,"abstract":"<div><p>This manuscript aims to systematically consider the main periodicity and additional (secondary, internal, and tetrad) periodicities using a uniform approach. The main features are summarized in table form. The history of the origin and development of these concepts is discussed. It is described how these periodicities manifest themselves and how they are determined at the experimental and theoretical levels. Areas of manifestation of these periodicities are outlined. As the general approach to explaining internal periodicity, attention is drawn to the symmetry of the quantum number S of atoms and the principle of equivalence of electrons and holes. Arguments are presented in favor of a more correct classification of the tetrad effect as tetrad periodicity, and an overview of this regularity is provided. A small modification of the conventional Periodic table is proposed, which reflects all the mentioned periodicities.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"331 - 358"},"PeriodicalIF":0.9,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4665340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A process ontology approach in biochemistry: the case of GPCRs and biosignaling","authors":"Fiorela Alassia","doi":"10.1007/s10698-022-09443-w","DOIUrl":"10.1007/s10698-022-09443-w","url":null,"abstract":"<div><p>According to process ontology in the philosophy of biology, the living world is better understood as processes rather than as substantial individuals. Within this perspective, an organism does not consist of a hierarchy of structures like a machine, but rather a dynamic hierarchy of processes, dynamically maintained and stabilized at different time scales. With this respect, two processual approaches on enzymes by Stein (Hyle Int J Philos Chem 10(4):5–22, 2004, Process Stud 34:62–80, 2005, Found Chem 8:3–29, 2006) and by Guttinger (Everything Flows: Towards a Processual Philosophy of Biology, Oxford University Press, Oxford, 2018) allows to think of macromolecules as relational and processual entities. In this work, I propose to extend their arguments to another case study within the biochemical domain, which is the case of ligand receptors and receptor-mediated biosignaling. The aim of this work is to analyze the case of G Protein-Coupled Receptors and biosignaling under the consideration of a processual ontology. I will defend that the processual ontology framework is adequate for the biochemical domain and that it allows accounting for the current biochemical knowledge related to the case study.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"405 - 422"},"PeriodicalIF":0.9,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4922403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Models, languages and representations: philosophical reflections driven from a research on teaching and learning about cellular respiration","authors":"Martín Pérgola, Lydia Galagovsky","doi":"10.1007/s10698-022-09444-9","DOIUrl":"10.1007/s10698-022-09444-9","url":null,"abstract":"<div><p>Mental model construction is supposed to be a useful cognitive devise for learning. Beyond human capacity of constructing mental models, scientists construct complex explanations about phenomena, named scientific or theoretical models. In this work we revisit three vissions: the first one concern about the polisemic term “model”. Our proposal is to discriminate between “mental models” and “explicit models”, being the former those “imaginistic” ideas constructed in scientists’—o teachers—minds, and the latter those teaching devices expressed in different languages that tend to communicate any “scientific model”. From this point of view, the class is considered a place where teachers’ mental models should be learned by novice students by decoding their teaching devices which are expressed in different languages. Other proposal of this work claims to distinguish the term “representation” with respect to its artistical or instrumental origin, highlighting that they are types of teaching devices and that artistical representations are always analogies. Finally, data about the construction of freshmen’s wrong mental models related to the use of the analogy between the chemical combustion and the global process of cellular respiration from glucose is presented to reinforce previous epistemological reflections.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"25 1","pages":"151 - 166"},"PeriodicalIF":0.9,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4743823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospective sustainable agriculture principles inspired by green chemistry","authors":"Praveen Kumar Sharma","doi":"10.1007/s10698-022-09442-x","DOIUrl":"10.1007/s10698-022-09442-x","url":null,"abstract":"<div><p>In present day’s sustainable agriculture is relatively a new area which required more attention by scientist/researchers and this one treated as basic need of human survival. In past decades, sustainable agriculture meets environmental and economic goals simultaneously, that’s why this field has received widespread interest. Green Chemistry is described as the ‘‘design of chemical products and processes to eliminate or reduce the use and generation of hazardous substances. Green chemistry mainly based on 12 principles and plays a very important role in environmental protection. For human development sustainable agriculture and green chemistry both are essential. This article discussed 12 proposed principles of sustainable agriculture inspired by existing 12 principles of Green Chemistry.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"359 - 362"},"PeriodicalIF":0.9,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4371885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hints for a formal language inspired by Lewis structures","authors":"Savino Longo","doi":"10.1007/s10698-022-09439-6","DOIUrl":"10.1007/s10698-022-09439-6","url":null,"abstract":"<div><h2>Summary</h2><div><p>In this work we elaborate on the idea of a formal theory for a limited but important part of structural chemistry, that described by Lewis’ methods and VSEPR (Valence Shell Electron Pair Repulsion). For this purpose, recursive functions and propositional functions are defined, that apply to formal expressions of the structure, based on a finite set of symbols. This approach allows for the expression of numerous questions of chemical interest. The formalization of basic structural chemistry based on Lewis/VSEPR method is potentially useful for the automation of the related procedures, but possibly also of some use as complementary material in teaching and as a heuristic tool in structural chemistry.</p></div></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"24 3","pages":"315 - 330"},"PeriodicalIF":0.9,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-022-09439-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4112441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}