{"title":"Philosophical grounds for designing invisible molecules","authors":"Hirofumi Ochiai","doi":"10.1007/s10698-022-09433-y","DOIUrl":null,"url":null,"abstract":"<div><p>‘Structure’ is the term whose proper use is exemplified by an expression like ‘the structure of a diesel-engine,’ in which what is referred to is accessible to immediate observation. It is also used figuratively like ‘social structure.’ While unobservable, what is referred to is empirically accessible. By contrast, molecules are neither observable nor empirically accessible. What philosophical grounds enable us to design invisible structure of molecules? Our cognition of objects becomes realized as phenomena when objects are given to our phenomenal fields. (Ochiai, Found Chem 22:77–86, 2020a, Found Chem 22:457–465, 2020b, A philosophical essay on molecular structure, Cambridge Scholars Publishing, Newcastle upon Tyne, pp 147–174, 2021) A phenomenal field is a pictorial representation of the mind’s self-transcending character and shows the relation between ‘self’ and ‘world.’ Molecular structure becomes realized as an affordance of molecules in a phenomenal field proper to organic chemists. It is a context-sensitive dispositional attribute of an {organic chemist-world} complex. Although designing molecules presupposes molecular structure, the latter is not sufficient for the former to make sense. Molecules must be designable as well. Designing molecules aims to create or modify molecular structure in order to provide compounds with certain chemical and/or physical properties. That is, designable molecules make sense in contexts in which they serve as a means to achieve this purpose and become realized as an affordance. Given that molecular structure and designable molecules are affordances of molecules, the fact that there are contexts in which they make sense provides grounds for conceiving and designing invisible structure of molecules. Heidegger’s arguments in <i>Being and Time</i> about characteristics of the being of beings corroborate our argument that what becomes realized as an affordance exists as what he calls a useful thing for us.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10698-022-09433-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
‘Structure’ is the term whose proper use is exemplified by an expression like ‘the structure of a diesel-engine,’ in which what is referred to is accessible to immediate observation. It is also used figuratively like ‘social structure.’ While unobservable, what is referred to is empirically accessible. By contrast, molecules are neither observable nor empirically accessible. What philosophical grounds enable us to design invisible structure of molecules? Our cognition of objects becomes realized as phenomena when objects are given to our phenomenal fields. (Ochiai, Found Chem 22:77–86, 2020a, Found Chem 22:457–465, 2020b, A philosophical essay on molecular structure, Cambridge Scholars Publishing, Newcastle upon Tyne, pp 147–174, 2021) A phenomenal field is a pictorial representation of the mind’s self-transcending character and shows the relation between ‘self’ and ‘world.’ Molecular structure becomes realized as an affordance of molecules in a phenomenal field proper to organic chemists. It is a context-sensitive dispositional attribute of an {organic chemist-world} complex. Although designing molecules presupposes molecular structure, the latter is not sufficient for the former to make sense. Molecules must be designable as well. Designing molecules aims to create or modify molecular structure in order to provide compounds with certain chemical and/or physical properties. That is, designable molecules make sense in contexts in which they serve as a means to achieve this purpose and become realized as an affordance. Given that molecular structure and designable molecules are affordances of molecules, the fact that there are contexts in which they make sense provides grounds for conceiving and designing invisible structure of molecules. Heidegger’s arguments in Being and Time about characteristics of the being of beings corroborate our argument that what becomes realized as an affordance exists as what he calls a useful thing for us.
期刊介绍:
Foundations of Chemistry is an international journal which seeks to provide an interdisciplinary forum where chemists, biochemists, philosophers, historians, educators and sociologists with an interest in foundational issues can discuss conceptual and fundamental issues which relate to the `central science'' of chemistry. Such issues include the autonomous role of chemistry between physics and biology and the question of the reduction of chemistry to quantum mechanics. The journal will publish peer-reviewed academic articles on a wide range of subdisciplines, among others: chemical models, chemical language, metaphors, and theoretical terms; chemical evolution and artificial self-replication; industrial application, environmental concern, and the social and ethical aspects of chemistry''s professionalism; the nature of modeling and the role of instrumentation in chemistry; institutional studies and the nature of explanation in the chemical sciences; theoretical chemistry, molecular structure and chaos; the issue of realism; molecular biology, bio-inorganic chemistry; historical studies on ancient chemistry, medieval chemistry and alchemy; philosophical and historical articles; and material of a didactic nature relating to all topics in the chemical sciences. Foundations of Chemistry plans to feature special issues devoted to particular themes, and will contain book reviews and discussion notes. Audience: chemists, biochemists, philosophers, historians, chemical educators, sociologists, and other scientists with an interest in the foundational issues of science.