Tissue Engineering Part A最新文献

筛选
英文 中文
Revealing Early Spatial Patterns of Cellular Responsivity in Fiber-Reinforced Microenvironments. 揭示纤维增强微环境中细胞反应的早期空间模式
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-10-01 Epub Date: 2024-06-10 DOI: 10.1089/ten.TEA.2024.0017
Saitheja A Pucha, Maddie Hasson, Hanna Solomon, Gail E McColgan, Jennifer L Robinson, Sebastián L Vega, Jay M Patel
{"title":"Revealing Early Spatial Patterns of Cellular Responsivity in Fiber-Reinforced Microenvironments.","authors":"Saitheja A Pucha, Maddie Hasson, Hanna Solomon, Gail E McColgan, Jennifer L Robinson, Sebastián L Vega, Jay M Patel","doi":"10.1089/ten.TEA.2024.0017","DOIUrl":"10.1089/ten.TEA.2024.0017","url":null,"abstract":"<p><p>Fiber-reinforcement approaches have been used to replace aligned tissues with engineered constructs after injury or surgical resection, strengthening soft biomaterial scaffolds and replicating anisotropic, load-bearing properties. However, most studies focus on the macroscale aspects of these scaffolds, rarely considering the cell-biomaterial interactions that govern remodeling and extracellular matrix organization toward aligned neo-tissues. As initial cell-biomaterial responses within fiber-reinforced microenvironments likely influence the long-term efficacy of repair and regeneration strategies, here we elucidate the roles of spatial orientation, substrate stiffness, and matrix remodeling on early cell-fiber interactions. Bovine mesenchymal stromal cells (MSCs) were cultured in soft fibrin gels reinforced with a stiff 100 µm polyglycolide-co-caprolactone fiber. Gel stiffness and remodeling capacity were modulated by fibrinogen concentration and aprotinin treatment, respectively. MSCs were imaged at 3 days and evaluated for morphology, mechanoresponsiveness (nuclear Yes-associated protein [YAP] localization), and spatial features including distance and angle deviation from fiber. Within these constructs, morphological conformity decreased as a function of distance from fiber. However, these correlations were weak (<i>R</i><sup>2</sup> = 0.01043 for conformity and <i>R</i><sup>2</sup> = 0.05542 for nuclear YAP localization), illustrating cellular heterogeneity within fiber-enforced microenvironments. To better assess cell-fiber interactions, we applied machine-learning strategies to our heterogeneous dataset of cell-shape and mechanoresponsive parameters. Principal component analysis (PCA) was used to project 23 input parameters (not including distance) onto 5 principal components (PCs), followed by agglomerative hierarchical clustering to classify cells into 3 groups. These clusters exhibited distinct levels of morpho-mechanoresponse (combination of morphological conformity and YAP signaling) and were classified as high response (HR), medium response (MR), and low response (LR) clusters. Cluster distribution varied spatially, with most cells (61%) closest to the fiber (0-75 µm) belonging to the HR cluster, and most cells (55%) furthest from the fiber (225-300 µm) belonging to the LR cluster. Modulation of gel stiffness and fibrin remodeling showed differential effects for HR cells, with stiffness influencing the level of mechanoresponse and remodeling capacity influencing the location of responding cells. Together, these novel findings demonstrate early trends in cellular patterning of the fiber-reinforced microenvironment, showing how spatial orientation, substrate biophysical properties, and matrix remodeling may guide the amplitude and localization of cellular mechanoresponses. These trends may guide approaches to optimize the design of microscale scaffold architecture and substrate properties for enhancing organized tissue assembly at","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"614-626"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping Biomaterial Complexity by Machine Learning. 通过机器学习绘制生物材料的复杂性。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-10-01 Epub Date: 2024-09-12 DOI: 10.1089/ten.TEA.2024.0067
Eman Ahmed, Prajakatta Mulay, Cesar Ramirez, Gabriela Tirado-Mansilla, Eugene Cheong, Adam J Gormley
{"title":"Mapping Biomaterial Complexity by Machine Learning.","authors":"Eman Ahmed, Prajakatta Mulay, Cesar Ramirez, Gabriela Tirado-Mansilla, Eugene Cheong, Adam J Gormley","doi":"10.1089/ten.TEA.2024.0067","DOIUrl":"10.1089/ten.TEA.2024.0067","url":null,"abstract":"<p><p>Biomaterials often have subtle properties that ultimately drive their bespoke performance. Given this nuanced structure-function behavior, the standard scientific approach of one experiment at a time or design of experiment methods is largely inefficient for the discovery of complex biomaterials. More recently, high-throughput experimentation coupled with machine learning methods has matured beyond expert users allowing scientists and engineers from diverse backgrounds to access these powerful data science tools. As a result, we now have the opportunity to strategically utilize all available data from high-throughput experiments to train efficacious models and map the structure-function behavior of biomaterials for their discovery. Herein, we discuss this necessary shift to data-driven determination of structure-function properties of biomaterials as we highlight how machine learning is leveraged in identifying physicochemical cues for biomaterials in tissue engineering, gene delivery, drug delivery, protein stabilization, and antifouling materials. We also discuss data-mining approaches that are coupled with machine learning to map biomaterial functions that reduce the load on experimental approaches for faster biomaterial discovery. Ultimately, harnessing the prowess of machine learning will lead to accelerated discovery and development of optimal biomaterial designs.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"662-680"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue. 内皮细胞可促进无支架三维血管组织中间充质干细胞的分化。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-12 DOI: 10.1089/ten.TEA.2024.0122
William G DeMaria, Andre E Figueroa-Milla, Abigail Kaija, Anne E Harrington, Benjamin Tero, Larisa Ryzhova, Lucy Liaw, Marsha W Rolle
{"title":"Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue.","authors":"William G DeMaria, Andre E Figueroa-Milla, Abigail Kaija, Anne E Harrington, Benjamin Tero, Larisa Ryzhova, Lucy Liaw, Marsha W Rolle","doi":"10.1089/ten.TEA.2024.0122","DOIUrl":"10.1089/ten.TEA.2024.0122","url":null,"abstract":"<p><p>In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0%, 10%, 20%, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, Western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprising 20% and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared with the 0% EC rings. On average, the 0%, 10%, 20%, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± standard deviation [SD]) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0%, 10%, 20%, and 30% EC rings was 88.5 ± 36. , 121 ± 59.1, 147 ± 43.1, and 206 ±  0.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue-engineered blood vessels (TEBVs) and compared with 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared with hMSCs alone and indicates a method to create a functional 3D human vascular cell coculture model.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Matrix Stiffness And Viscosity on Lipid Phenotype And Fat Lineage Potential. 基质硬度和粘度对脂质表型和脂肪血统潜能的作用
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-12 DOI: 10.1089/ten.TEA.2024.0149
Chelsea J Stephens, Reina Kobayashi, Daniel C Berry, Jonathan T Butcher
{"title":"The Role of Matrix Stiffness And Viscosity on Lipid Phenotype And Fat Lineage Potential.","authors":"Chelsea J Stephens, Reina Kobayashi, Daniel C Berry, Jonathan T Butcher","doi":"10.1089/ten.TEA.2024.0149","DOIUrl":"10.1089/ten.TEA.2024.0149","url":null,"abstract":"<p><p>Autologous fat transfer is a common procedure that patients undergo to rejuvenate large soft tissue defects. However, these surgeries are complicated by limited tissue sources, donor-site morbidity, and necrosis. While the biofabrication of fat tissue can serve as a clinical option for reconstructive surgery, the influence of matrix mechanics, specifically stiffness and viscosity, on adipogenesis requires further elucidation. Additionally, the effects of these mechanical parameters on metabolic and thermogenic fat potential have yet to be investigated. In this study, gelatin methacryloyl (GelMA) polymers with varying degrees of methacrylation (DoM) were fabricated to create matrices with different stiffnesses and viscosities. Human adipose-derived mesenchymal stem cells were then encapsulated in mechanically tunable GelMA and underwent adipogenesis to investigate the effects of matrix mechanics on lipid phenotype and fat potential. Mechanical testing confirmed that GelMA stiffness was regulated by DoM and weight composition, whereas viscosity was determined by the latter. Further work revealed that while lipid phenotype became more enriched as matrix stiffness and viscosity declined, the potential toward metabolic and thermogenic fat appeared to be more viscous dependent rather than stiffness dependent. In addition, fatty acid binding protein 4 and uncoupling protein 1 gene expression exhibited viscous-dependent behavior despite comparable levels of peroxisome proliferator-activated receptor gamma. However, despite the superior role of viscosity, lipid quantity and mitochondrial abundance demonstrated stiffness-dependent behavior. Overall, this work revealed that matrix viscosity played a more superior role than stiffness in driving adipogenesis and distinguishing between metabolic and thermogenic fat potential. Ultimately, this differentiation in fat production is important for engineering ideal adipose tissue for large soft tissue defects.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward the Development of a Tissue Engineered Gradient Utilizing CRISPR-Guided Gene Modulation. 利用 CRISPR 引导的基因调控技术开发组织工程梯度。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-01 Epub Date: 2024-03-06 DOI: 10.1089/ten.TEA.2023.0352
Jacob D Weston, Brooke Austin, Hunter Levis, Jared Zitnay, Jeffrey A Weiss, Brandon Lawrence, Robby D Bowles
{"title":"Toward the Development of a Tissue Engineered Gradient Utilizing CRISPR-Guided Gene Modulation.","authors":"Jacob D Weston, Brooke Austin, Hunter Levis, Jared Zitnay, Jeffrey A Weiss, Brandon Lawrence, Robby D Bowles","doi":"10.1089/ten.TEA.2023.0352","DOIUrl":"10.1089/ten.TEA.2023.0352","url":null,"abstract":"<p><p>Cellular, compositional, and mechanical gradients are found throughout biological tissues, especially in transition zones between tissue types. Yet, strategies to engineer such gradients have proven difficult due to the complex nature of these tissues. Current strategies for tissue engineering complex gradients often utilize stem cells; however, these multipotent cells require direction from environmental cues, which can be difficult to control both <i>in vitro</i> and <i>in vivo</i>. In this study, we utilize clustered regularly-interspaced short palindromic repeats (CRISPR)-guided gene modulation to direct the differentiation of multipotent adipose-derived stem cells (ASCs) to demonstrate the effectiveness of CRISPR-engineered cells in tissue engineering applications. Specifically, we screen CRISPR-interference (CRISPRi) constructs targeting the promotors of selected osteogenic inhibitors and demonstrate that ASC osteogenic differentiation and mineral deposition can be regulated with CRISPRi targeting of Noggin without the use of exogenous growth factors in tissue engineered constructs. As a proof of concept, we combine three technologies developed out of our laboratories to demonstrate the controlled deposition of these engineered cells in a gradient with CRISPR-activation multiplex-engineered aggrecan/collagen type-II-chondrogenic ASCs on a high density anisotropic type I collagen construct to create a cell and tissue gradient similar to the fibrocartilage-to-mineralized-fibrocartilage gradient in the enthesis. Our results display the promise of CRISPR-engineered ASCs to produce tissue gradients, similar to what is observed in native tissue.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"525-535"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Posttranscriptional Modification to Modulate Progenitor Differentiation on Heterotypic Spheroids. 转录后修饰调节异型球体上的祖细胞分化
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-01 Epub Date: 2024-07-03 DOI: 10.1089/ten.TEA.2023.0279
Nazmiye Celik, Srinivas V Koduru, Dino J Ravnic, Ibrahim T Ozbolat, Daniel J Hayes
{"title":"Posttranscriptional Modification to Modulate Progenitor Differentiation on Heterotypic Spheroids.","authors":"Nazmiye Celik, Srinivas V Koduru, Dino J Ravnic, Ibrahim T Ozbolat, Daniel J Hayes","doi":"10.1089/ten.TEA.2023.0279","DOIUrl":"10.1089/ten.TEA.2023.0279","url":null,"abstract":"<p><p>Cell aggregates are widely used to study heterotypic cellular interactions during the development of vascularization <i>in vitro</i>. In this study, we examined heterotypic cellular spheroids made of adipose-derived stem cells and CD34<sup>+</sup>/CD31<sup>-</sup> endothelial progenitor cells induced by the transfection of miR-148b mimic for <i>de novo</i> induction of osteogenic differentiation and miR-210 mimic for <i>de novo</i> induction of endotheliogenesis, respectively. The effect of the microRNA (miRs) mimic treatment group and induction time on codifferentiation was assessed in spheroids formed of transfected cells over the course of a 4-week culture. Based on gene and protein markers of osteogenic and endotheliogenic differentiation, as well as mineralization assays, our results showed that miRs directed cell differentiation and that progenitor maturity influenced the development of heterotypic cellular regions in aggregates. Overall, the success of coculture to create a prevascularized bone model is dependent on a number of factors, particularly the induction time of differentiation before combining the multiple cell types in aggregates. The approach that has been proposed could be valuable in creating vascularized bone tissue by employing spheroids as the building blocks of more complex issues through the use of cutting-edge methods such as 3D bioprinting.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"536-549"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Injectable Hydrogel Loaded with GMSCs-Derived Neural Lineage Cells Promotes Recovery after Stroke. 一种可注射的水凝胶装载了源自 GMSCs 的神经系细胞,可促进中风后的恢复。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-01 Epub Date: 2024-06-10 DOI: 10.1089/ten.TEA.2023.0330
Shan Jiang, Changyong Yuan, Ting Zou, Jun Hao Koh, Mohammed Basabrain, Qixin Chen, Junqing Liu, Boon Chin Heng, Lee Wei Lim, Penglai Wang, Chengfei Zhang
{"title":"An Injectable Hydrogel Loaded with GMSCs-Derived Neural Lineage Cells Promotes Recovery after Stroke.","authors":"Shan Jiang, Changyong Yuan, Ting Zou, Jun Hao Koh, Mohammed Basabrain, Qixin Chen, Junqing Liu, Boon Chin Heng, Lee Wei Lim, Penglai Wang, Chengfei Zhang","doi":"10.1089/ten.TEA.2023.0330","DOIUrl":"10.1089/ten.TEA.2023.0330","url":null,"abstract":"<p><p>Ischemic stroke is a devastating medical condition with poor prognosis due to the lack of effective treatment modalities. Transplantation of human neural stem cells or primary neural cells is a promising treatment approach, but this is hindered by limited suitable cell sources and low <i>in vitro</i> expansion capacity. This study aimed (1) use small molecules (SM) to reprogram gingival mesenchymal stem cells (GMSCs) commitment to the neural lineage cells <i>in vitro</i>, and (2) use hyaluronic acid (HA) hydrogel scaffolds seeded with GMSCs-derived neural lineage cells to treat ischemic stroke <i>in vivo</i>. Neural induction was carried out with a SM cocktail-based one-step culture protocol over a period of 24 h. The induced cells were analyzed for expression of neural markers with immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). The Sprague-Dawley (SD) rats (<i>n</i> = 100) were subjected to the middle cerebral artery occlusion (MCAO) reperfusion ischemic stroke model. Then, after 8 days post-MCAO, the modeled rats were randomly assigned to six study groups (<i>n</i> = 12 per group): (1) GMSCs, (2) GMSCs-derived neural lineage cells, (3) HA and GMSCs-derived neural lineage cells, (4) HA, (5) PBS, and (6) sham transplantation control, and received their respective transplantation. Evaluation of post-stroke recovery were performed by behavioral tests and histological assessments. The morphologically altered nature of neural lineages has been observed of the GMSCs treated with SMs compared to the untreated controls. As shown by the qRT-PCR and immunocytochemistry, SMs further significantly enhanced the expression level of neural markers of GMSCs as compared with the untreated controls (all <i>p</i> < 0.05). Intracerebral injection of self-assembling HA hydrogel carrying GMSCs-derived neural lineage cells promoted the recovery of neural function and reduced ischemic damage in rats with ischemic stroke, as demonstrated by histological examination and behavioral assessments (all <i>p</i> < 0.05). In conclusion, the SM cocktail significantly enhanced the differentiation of GMSCs into neural lineage cells. The HA hydrogel was found to facilitate the proliferation and differentiation of GMSCs-derived neural lineage cells. Furthermore, HA hydrogel seeded with GMSCs-derived neural lineage cells could promote tissue repair and functional recovery in rats with ischemic stroke and may be a promising alternative treatment modality for stroke.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"563-576"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Passaging on Bovine Chondrocyte Gene Expression and Engineered Cartilage Production. 传代对牛软骨细胞基因表达和工程软骨生产的影响
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-01 Epub Date: 2024-03-14 DOI: 10.1089/ten.TEA.2023.0349
Emily D Lindberg, Serra Kaya, Amir A Jamali, Tamara Alliston, Grace D O'Connell
{"title":"Effect of Passaging on Bovine Chondrocyte Gene Expression and Engineered Cartilage Production.","authors":"Emily D Lindberg, Serra Kaya, Amir A Jamali, Tamara Alliston, Grace D O'Connell","doi":"10.1089/ten.TEA.2023.0349","DOIUrl":"10.1089/ten.TEA.2023.0349","url":null,"abstract":"<p><p>Tissue engineering strategies show great potential for repairing osteochondral defects in osteoarthritic joints; however, these approaches often rely on passaging cells multiple times to obtain enough cells to produce functional tissue. Unfortunately, monolayer expansion culture causes chondrocyte dedifferentiation, which is accompanied by a phenotypical and morphological shift in chondrocyte properties that leads to a reduction in the quality of <i>de novo</i> cartilage produced. Thus, the objective of this study was to evaluate transcriptional variations during <i>in vitro</i> expansion culture and determine how differences in cell phenotype from monolayer expansion alter development of functional engineered cartilage. We used an unbiased approach to explore genome-wide transcriptional differences in chondrocyte phenotype at passage 1 (P1), P3, and P5, and then seeded cells into hydrogel scaffolds at P3 and P5 to assess cells' abilities to produce cartilaginous extracellular matrix in three dimensional (3D). We identified distinct phenotypic differences, specifically for genes related to extracellular organization and cartilage development. Both P3 and P5 chondrocytes were able to produce chondrogenic tissue in 3D, with P3 cells producing matrix with greater compressive properties and P5 cells secreting matrix with higher glycosaminoglycan/DNA and collagen/DNA ratios. Furthermore, we identified 24 genes that were differentially expressed with passaging and enriched in human osteoarthritis (OA) genome-wide association studies, thereby prioritizing them as functionally relevant targets to improve protocols that recapitulate functional healthy cartilage with cells from adult donors. Specifically, we identified novel genes, such as <i>TMEM190</i> and <i>RAB11FIP4</i>, which were enriched with human hip OA and may play a role in chondrocyte dedifferentiation. This work lays the foundation for several pathways and genes that could be modulated to enhance the efficacy for chondrocyte culture for tissue regeneration, which could have transformative impacts for cell-based cartilage repair strategies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"512-524"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conductive Hydrogel Restores Electrical Conduction to Promote Neurological Recovery in a Rat Model. 导电水凝胶恢复电传导,促进大鼠模型的神经功能恢复
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-01 Epub Date: 2024-05-03 DOI: 10.1089/ten.TEA.2023.0372
Yichong Zhang, Alina Yao, Jun Wu, Shuhong Li, Minyao Wang, Zexu Peng, Hsing-Wen Sung, Baoguo Jiang, Ren-Ke Li
{"title":"Conductive Hydrogel Restores Electrical Conduction to Promote Neurological Recovery in a Rat Model.","authors":"Yichong Zhang, Alina Yao, Jun Wu, Shuhong Li, Minyao Wang, Zexu Peng, Hsing-Wen Sung, Baoguo Jiang, Ren-Ke Li","doi":"10.1089/ten.TEA.2023.0372","DOIUrl":"10.1089/ten.TEA.2023.0372","url":null,"abstract":"<p><p>Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"577-587"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
13C Metabolic Flux Analysis in Chondrocytes Reveals a Novel Switch in Metabolic Phenotype. 软骨细胞的 13C 代谢通量分析揭示了代谢表型的新变化
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-09-01 Epub Date: 2024-03-25 DOI: 10.1089/ten.TEA.2023.0321
Roberto Tarantino, Halie Mei Jensen, Stephen D Waldman
{"title":"<sup>13</sup>C Metabolic Flux Analysis in Chondrocytes Reveals a Novel Switch in Metabolic Phenotype.","authors":"Roberto Tarantino, Halie Mei Jensen, Stephen D Waldman","doi":"10.1089/ten.TEA.2023.0321","DOIUrl":"10.1089/ten.TEA.2023.0321","url":null,"abstract":"<p><p>Chondrocytes are typically known for their anaerobic metabolism both <i>in vivo</i> and under culture conditions <i>in vitro</i>. However, chondrocytes have been shown to display greater biosynthetic activity when subjected to conditions that elicit aerobic metabolism. We have previously shown that tissue formation by chondrocytes can be upregulated by controlling nutrient availability and that this response arises from changes in glucose metabolism. The aim of the present study was to further characterize these changes through <sup>13</sup>C-metabolic flux analysis (<sup>13</sup>C-MFA), as well as to determine the most optimal response. Primary bovine chondrocytes were grown in scaffold-free high-density tissue culture. [U-<sup>13</sup>C] glucose labeling experiments were combined with a tissue-specific metabolic network model to carry out <sup>13</sup>C-MFA under varying levels of nutrient availability. <sup>13</sup>C-MFA results demonstrated that when subjected to increasing nutrient availability, chondrocytes switch from a predominately anaerobic to a mixed aerobic-anaerobic phenotype. This metabolic switch was attributed to the saturation of the lactate fermentation pathway and metabolite overflow toward the tricarboxylic acid cycle. This effect appears to be similar to, but the inverse of, the Crabtree effect (\"inverse Crabtree effect\"). The relationships between metabolic flux and nutrient availability were then utilized to identify culture conditions that promote enhanced tissue formation. This novel metabolic effect presents a simple but effective approach for enhancing the biosynthetic response of chondrocytes-a key requirement to develop functional engineered cartilaginous tissue for joint resurfacing.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"550-562"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信