Tissue Engineering Part A最新文献

筛选
英文 中文
Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury. 再生组织工程支架在脊髓损伤治疗中的应用。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-02-01 Epub Date: 2024-11-18 DOI: 10.1089/ten.tea.2024.0194
Katherine J Bradshaw, Nic D Leipzig
{"title":"Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury.","authors":"Katherine J Bradshaw, Nic D Leipzig","doi":"10.1089/ten.tea.2024.0194","DOIUrl":"10.1089/ten.tea.2024.0194","url":null,"abstract":"<p><p>Tissue engineering provides a path forward for emerging personalized medicine therapies as well as the ability to bring about cures for diseases or chronic injuries. Traumatic spinal cord injuries (SCIs) are an example of a chronic injury in which no cure or complete functional recovery treatment has been developed. In part, this has been due to the complex and interconnected nature of the central nervous system (CNS), the cellular makeup, its extracellular matrix (ECM), and the injury site pathophysiology. One way to combat the complex nature of an SCI has been to create functional tissue-engineered scaffolds that replace or replenish the aspects of the CNS and tissue/ECM that are damaged following the immediate injury and subsequent immune response. This can be achieved by employing the tissue-engineering triad consisting of cells, biomaterial(s), and environmental factors. Stem cells, with their innate ability to proliferate and differentiate, are a common choice for cellular therapies. Natural or synthetic biomaterials that have tunable characteristics are normally used as the scaffold base. Environmental factors can range from drugs to growth factors (GFs) or proteins, depending on if the idea would be to stimulate exogeneous or endogenous cell populations or just simply retain cells on the scaffold for effective transplantation. For functional regeneration and integration for SCI, the scaffold must promote neuroprotection and neuroplasticity. Tissue-engineering strategies have shown benefits including neuronal differentiation, axonal regeneration, axonal outgrowth, integration into the native spinal cord, and partial functional recovery. Overall, this review focuses on the background that causes SCI to be so difficult to treat, the individual components of the tissue-engineering triad, and how combinatorial scaffolds can be beneficial toward the prospects of future SCI recovery.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"108-125"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Dexamethasone-Eluting Cell-Seeded Constructs in a Preclinical Canine Model of Cartilage Repair. 在临床前犬科软骨修复模型中评估地塞米松洗脱细胞种子构建物
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-02-01 Epub Date: 2024-11-28 DOI: 10.1089/ten.tea.2024.0244
Andy J Lee, Lianna R Gangi, Yizhong Jenny Hu, Andreea T Dinescu, X Edward Guo, Chantelle C Bozynski, Keiichi Kuroki, Aaron M Stoker, Kacey G Marra, Gerard A Ateshian, James L Cook, Clark T Hung
{"title":"Evaluation of Dexamethasone-Eluting Cell-Seeded Constructs in a Preclinical Canine Model of Cartilage Repair.","authors":"Andy J Lee, Lianna R Gangi, Yizhong Jenny Hu, Andreea T Dinescu, X Edward Guo, Chantelle C Bozynski, Keiichi Kuroki, Aaron M Stoker, Kacey G Marra, Gerard A Ateshian, James L Cook, Clark T Hung","doi":"10.1089/ten.tea.2024.0244","DOIUrl":"10.1089/ten.tea.2024.0244","url":null,"abstract":"<p><p>In this 12-month long, preclinical large animal study using a canine model, we report that engineered osteochondral grafts (comprised of allogeneic chondrocyte-seeded hydrogels with the capacity for sustained release of the corticosteroid dexamethasone [DEX], cultured to functional mechanical properties, and incorporated over porous titanium bases), can successfully repair damaged cartilage. DEX release from within engineered cartilage was hypothesized to improve initial cartilage repair by modulating the local inflammatory environment, which was also associated with suppressed degenerative changes exhibited by menisci and synovium. We note that not all histological and clinical outcomes at an intermediary time point of three months paralleled 12-month outcomes, which emphasizes the importance of <i>in vivo</i> studies in valid preclinical models that incorporate clinically relevant follow-up durations. Together, our study demonstrates that engineered cartilage fabricated under the conditions reported herein can repair full-thickness cartilage defects and promote synovial joint health and function.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"208-218"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TGFβ-1 and Healing of Bone Defects in Large Animal and Rabbit Models: A Systematic Review. tgf - β-1与大动物和家兔骨缺损愈合的系统回顾
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-02-01 Epub Date: 2024-12-26 DOI: 10.1089/ten.tea.2024.0226
Sara Trbojevic, Juan M Taboas, Alejandro J Almarza
{"title":"TGFβ-1 and Healing of Bone Defects in Large Animal and Rabbit Models: A Systematic Review.","authors":"Sara Trbojevic, Juan M Taboas, Alejandro J Almarza","doi":"10.1089/ten.tea.2024.0226","DOIUrl":"10.1089/ten.tea.2024.0226","url":null,"abstract":"<p><p>Long bone and craniofacial bone fractures amount to an overwhelming expenditure for patients and health care systems each year. Overall, 5-10% of all bone fractures result in some form of delayed or nonunion fractures. Nonunions occur from insufficient mechanical stabilization or a compromised wound environment lacking in vasculature and progenitor cells. The current standard for treating these critical-sized fractures and defects is the use of autologous bone grafts. However, advancements in tissue engineering have cultivated a shift in scientific efforts toward harnessing the body's own regenerative resources. As such, research on fracture healing has shifted as well. Transforming growth factor-beta 1 (TGFβ-1) has been studied in fracture healing for over 25 years, though many of these studies have been <i>in vitro</i> or in small animal models. The few studies in large animals have disagreement due to the heterogeneity within the experimental design. Because TGFβ-1 plays such a crucial role in the bone healing process, this systematic review investigates the application of TGFβ-1 in various carrier vehicles for repairing bone injuries in large animal and rabbit models. A systematic search was conducted in PubMed, Embase, and Web of Science (from database construction-October 2024). A total of 244 articles were screened, and 24 studies were included for review. Most large animal long bone studies used coated titanium implants, while most rabbit long bone studies used some form of degradable polymer constructs. TGFβ-1 doses in large animal long bone studies range from 0.005 to 750 µg, doses in large animal calvaria and mandible studies range from 1 to 5000 µg, and doses in rabbit long bone studies range from 0.05 to 120 µg. Nineteen out of 24 articles reviewed indicate successful use of TGFβ-1 for bone regeneration compared with experimental controls. It is clear that dose and controlled release of growth factor play a crucial role in defect closure, but outcome measures and success criteria were inconsistent across studies. More studies with consistent experimental designs are critical for understanding the therapeutic potential of TGFβ-1 in fracture repair, but overall, this review indicates that TGFβ-1 can be used alone or in conjunction with other growth factors to accelerate successful bone repair.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"126-138"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration. 一种生物可吸收的脂肪干细胞植入体用于脂肪再生。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-13 DOI: 10.1089/ten.tea.2024.0239
Qiannan Zhao, Shuichi Ogino, Yoshihiro Sowa, Sunghee Lee, Yuki Kato, Yuanjiaozi Li, Michiharu Sakamoto, Hiroki Yamanaka, Takashi Nakano, Eiichi Sawaragi, Yasuhiko Tabata, Naoki Morimoto
{"title":"A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.","authors":"Qiannan Zhao, Shuichi Ogino, Yoshihiro Sowa, Sunghee Lee, Yuki Kato, Yuanjiaozi Li, Michiharu Sakamoto, Hiroki Yamanaka, Takashi Nakano, Eiichi Sawaragi, Yasuhiko Tabata, Naoki Morimoto","doi":"10.1089/ten.tea.2024.0239","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0239","url":null,"abstract":"<p><p>Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10<sup>6</sup> cells/implant, H-ASC) and low concentration (1 × 10<sup>5</sup> cells/implant, L-ASC), as were unseeded controls. Adipogenesis was evaluated at 3, 6, and 12 months using a rat inguinal model. At 3 months, the weight and volume of newly formed tissues in the H-ASC group were significantly higher than those in the control group. Histological assessment revealed that the area of all newly formed tissue, including the adipose tissue inside the implants in the H-ASC group, was larger at 6 and 12 months compared with that of the control and L-ASC groups, with the adipose percentage at 12 months being higher in the H-ASC group than in the control group. GFP-positive ASCs in both the L-ASC and H-ASC groups adhered to the CS scaffolds and survived for up to 12 months postimplantation, with spontaneous differentiation into adipocytes observed exclusively in the H-ASC group. Double immunofluorescence confirmed the presence of GFP-positive adipocytes. In summary, this study demonstrated that ASCs coimplanted with PLLA-CS implants could enhance adipose tissue formation within the implants. Uninduced ASCs were capable of spontaneously differentiating into adipocytes within the PLLA-CS implants, with differentiation correlating with the number of implanted cells.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin. 原代人类巨噬细胞和腱细胞愈合表型因每个细胞来源的外泌体而改变。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-06 DOI: 10.1089/ten.tea.2024.0143
Devin von Stade, Melinda Meyers, James Johnson, Theodore Schlegel, Anthony Romeo, Daniel Regan, Kirk McGilvray
{"title":"Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin.","authors":"Devin von Stade, Melinda Meyers, James Johnson, Theodore Schlegel, Anthony Romeo, Daniel Regan, Kirk McGilvray","doi":"10.1089/ten.tea.2024.0143","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0143","url":null,"abstract":"<p><p>The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing. To this end, we investigated the differential regulation of human primary macrophage transcriptomic responses and cytokine secretion by tenocyte-derived EVs (TdEVs) compared with MSCdEVs. Compared with MSCdEVs, TdEVs upregulated TNFa-NFkB and TGFB signaling and pathways associated with osteoclast differentiation in macrophages while decreasing secretion of several pro-inflammatory cytokines. Conditioned media of these TdEV educated macrophages drove increased tenocyte migration and decreased MMP3 and MMP13 expression. In contrast, MSCdEV education of macrophages drove increased gene expression pathways related to INFa, INFg and protection against oxidative stress while increasing cytokine expression of MCP1 and IL6. These data demonstrate that EV cell source differentially impacts the function of key effector cells in tendon healing and that TdEVs, compared with MSCdEVs, promote a more favorable tendon healing phenotype within these cells.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair. 用于软骨修复的可生物降解PHBVHHx-PEG/胶原水凝胶支架。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-02 DOI: 10.1089/ten.tea.2024.0108
Peng Su, Yunan Hu, Jian Li, DaiXu Wei, Weili Fu
{"title":"Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.","authors":"Peng Su, Yunan Hu, Jian Li, DaiXu Wei, Weili Fu","doi":"10.1089/ten.tea.2024.0108","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0108","url":null,"abstract":"<p><p>Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through <i>in vitro</i> and <i>in vivo</i> studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated. The cytocompatibility of the hydrogels was evaluated using the Cell Counting Kit-8 test, live/dead staining, scratch test, and transwell test. The effect of chondrogenic differentiation of PBMSCs on hydrogels was evaluated using immunofluorescence staining and reverse transcription-polymerase chain reaction. Furthermore, the <i>in vivo</i> cartilage repair ability of the hydrogels was confirmed following <i>in situ</i> injections in rabbit chondral defect models. Finally, the induced polarization of the hydrogel scaffold on macrophages was explored by the expression of CD86 and CD206. <i>In vitro</i> experimental results confirmed that PHBVHHx-COL-gel led to better cell migration, proliferation, and chondrogenic differentiation than PHBVHHx-PEG and COL hydrogels. Hematoxylin and eosin staining indicated that the tissue of the repaired area in the PHBVHHx-COL group was nearly in fusion with the surrounding normal tissue and the reconstruction of subchondral bone was good. Safranin-O staining and COL-2 immunohistochemistry indicated that the tissue of the repaired area in the PHBVHHx-COL group had more cartilage-specific matrix secretion. The PHBVHHx-COL group exhibited more M2 macrophage infiltration and less M1 macrophage presentation than the other groups. This study demonstrated that PHBVHHx-COL scaffolds loaded with PBMSCs significantly promoted the repair of cartilage injury through immune regulation by M2 polarization and could be potential candidates for cartilage tissue engineering.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restoration of Pregnancy Function Using a GT/PCL Biofilm in a Rabbit Model of Uterine Injury. 利用 GT/PCL 生物膜在兔子宫损伤模型中恢复妊娠功能。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-01 Epub Date: 2024-04-30 DOI: 10.1089/ten.TEA.2023.0366
Di Huang, Jing Liu, Jie Yang, Junhui Liang, Jing Zhang, Qinyu Han, Jianlong Yu, Tingting Yang, Qi Meng, Thorsten Steinberg, Changzhong Li, Zhongle Chang
{"title":"Restoration of Pregnancy Function Using a GT/PCL Biofilm in a Rabbit Model of Uterine Injury.","authors":"Di Huang, Jing Liu, Jie Yang, Junhui Liang, Jing Zhang, Qinyu Han, Jianlong Yu, Tingting Yang, Qi Meng, Thorsten Steinberg, Changzhong Li, Zhongle Chang","doi":"10.1089/ten.TEA.2023.0366","DOIUrl":"10.1089/ten.TEA.2023.0366","url":null,"abstract":"<p><p>Biomaterial scaffolds have been used successfully to promote the regenerative repair of small endometrial lesions in small rodents, providing partial restoration of gestational function. The use of rabbits in this study allowed us to investigate a larger endometrial tissue defect and myometrial injury model. A gelatin/polycaprolactone (GT/PCL) gradient-layer biofilm was sutured at the defect to guide the reconstruction of the original tissue structure. Twenty-eight days postimplantation, the uterine cavity had been restored to its original morphology, endometrial growth was accompanied by the formation of glands and blood vessels, and the fragmented myofibers of the uterine smooth muscle had begun to resemble the normal structure of the lagomorph uterine cavity, arranging in a circular luminal pattern and a longitudinal serosal pattern. In addition, the repair site supported both embryonic implantation into the placenta and normal embryonic development. Four-dimensional label-free proteomic analysis identified the cell adhesion molecules, phagosome, ferroptosis, rap1 signaling pathways, hematopoietic cell lineage, complement and coagulation cascades, tricarboxylic acid cycle, carbon metabolism, and hypoxia inducible factor (HIF)-1 signaling pathways as important in the endogenous repair process of uterine tissue injury, and acetylation of protein modification sites upregulated these signaling pathways.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"29-44"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140208371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting of a Liposomal Oxygen-Releasing Scaffold for Ovary Tissue Engineering. 用于卵巢组织工程的脂质体释氧支架的生物打印。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-01 Epub Date: 2024-04-12 DOI: 10.1089/ten.TEA.2024.0003
Arezoo Dadashzadeh, Saeid Moghassemi, Christiani A Amorim
{"title":"Bioprinting of a Liposomal Oxygen-Releasing Scaffold for Ovary Tissue Engineering.","authors":"Arezoo Dadashzadeh, Saeid Moghassemi, Christiani A Amorim","doi":"10.1089/ten.TEA.2024.0003","DOIUrl":"10.1089/ten.TEA.2024.0003","url":null,"abstract":"<p><p>This study addresses a critical challenge in bioprinting for regenerative medicine, specifically the issue of hypoxia compromising cell viability in engineered tissues. To overcome this hurdle, a novel approach using a microfluidic bioprinter is used to create a two-layer structure resembling the human ovary. This structure incorporates a liposomal oxygen-releasing system to enhance cell viability. The bioprinting technique enables the simultaneous extrusion of two distinct bioinks, namely, bioink A (comprising alginate 1% and 5 mg/mL PEGylated fibrinogen in a 20:1 molar ratio) and bioink B (containing alginate 0.5%). In addition, liposomal catalase and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) are synthesized and incorporated into bioinks A and B, respectively. The liposomes are prepared using thin film hydration with a monodisperse size (140-160 nm) and high encapsulation efficiency. To assess construct functionality, isolated human ovarian cells are added to bioink A. The bioprinted constructs, with or without liposomal oxygen-releasing systems, are cultured under hypoxic and normoxic conditions for 3 days. Live/Dead assay results demonstrate that liposomal oxygen-releasing systems effectively preserve cell viability in hypoxic conditions, resembling viability under normoxic conditions without liposomes. PrestoBlue assay reveals significantly higher mitochondrial activity in constructs with liposomal oxygen delivery systems under both hypoxic and normoxic conditions. The evaluation of apoptosis status through annexin V immunostaining shows that liposomal oxygen-releasing scaffolds successfully protect cells from hypoxic stress, exhibiting a proportion of apoptotic cells similar to normoxic conditions. In contrast, constructs lacking liposomes in hypoxic conditions exhibit a higher incidence of cells in early-stage apoptosis. In conclusion, the study demonstrates the promising potential of bioprinted oxygen-releasing liposomal scaffolds to protect ovarian stromal cells in hypoxic environments. These innovative scaffolds not only offer protection but also recapitulate the mechanical differences between the medulla and the cortex in the normal ovary structure. This opens new avenues for advanced ovary tissue engineering and transplantation strategies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"69-78"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative Printing for the Reinforcement of In Situ Tissue-Engineered Cartilage. 用于加固原位组织工程软骨的负打印技术。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-01 Epub Date: 2024-04-03 DOI: 10.1089/ten.TEA.2023.0358
Stephanie E Doyle, Finn Snow, Carmine Onofrillo, Claudia Di Bella, Cathal D O'Connell, Elena Pirogova, Serena Duchi
{"title":"Negative Printing for the Reinforcement of <i>In Situ</i> Tissue-Engineered Cartilage.","authors":"Stephanie E Doyle, Finn Snow, Carmine Onofrillo, Claudia Di Bella, Cathal D O'Connell, Elena Pirogova, Serena Duchi","doi":"10.1089/ten.TEA.2023.0358","DOIUrl":"10.1089/ten.TEA.2023.0358","url":null,"abstract":"<p><p>In the realm of <i>in situ</i> cartilage engineering, the targeted delivery of both cells and hydrogel materials to the site of a defect serves to directly stimulate chondral repair. Although the <i>in situ</i> application of stem cell-laden soft hydrogels to tissue defects holds great promise for cartilage regeneration, a significant challenge lies in overcoming the inherent limitation of these soft hydrogels, which must attain mechanical properties akin to the native tissue to withstand physiological loading. We therefore developed a system where a gelatin methacryloyl hydrogel laden with human adipose-derived mesenchymal stem cells is combined with a secondary structure to provide bulk mechanical reinforcement. In this study, we used the negative embodied sacrificial template 3D printing technique to generate eight different lattice-based reinforcement structures made of polycaprolactone, which ranged in porosity from 80% to 90% with stiffnesses from 28 ± 5 kPa to 2853 ± 236 kPa. The most promising of these designs, the hex prism edge, was combined with the cellular hydrogel and retained a stable stiffness over 41 days of chondrogenic differentiation. There was no significant difference between the hydrogel-only and hydrogel scaffold group in the sulfated glycosaminoglycan production (340.46 ± 13.32 µg and 338.92 ± 47.33 µg, respectively) or Type II Collagen gene expression. As such, the use of negative printing represents a promising solution for the integration of bulk reinforcement without losing the ability to produce new chondrogenic matrix.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"45-55"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologic Doses of Transforming Growth Factor-β Improve the Composition of Engineered Articular Cartilage. 生理剂量的 TGF-β 可改善人造关节软骨的组成。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2025-01-01 Epub Date: 2024-07-01 DOI: 10.1089/ten.TEA.2023.0360
Tianbai Wang, Sedat Dogru, Zhonghao Dai, Sung Yeon Kim, Nicholas A Vickers, Michael B Albro
{"title":"Physiologic Doses of Transforming Growth Factor-β Improve the Composition of Engineered Articular Cartilage.","authors":"Tianbai Wang, Sedat Dogru, Zhonghao Dai, Sung Yeon Kim, Nicholas A Vickers, Michael B Albro","doi":"10.1089/ten.TEA.2023.0360","DOIUrl":"10.1089/ten.TEA.2023.0360","url":null,"abstract":"<p><p>Conventionally, for cartilage tissue engineering applications, transforming growth factor beta (TGF-β) is administered at doses that are several orders of magnitude higher than those present during native cartilage development. While these doses accelerate extracellular matrix (ECM) biosynthesis, they may also contribute to features detrimental to hyaline cartilage function, including tissue swelling, type I collagen (COL-I) deposition, cellular hypertrophy, and cellular hyperplasia. In contrast, during native cartilage development, chondrocytes are exposed to moderate TGF-β levels, which serve to promote strong biosynthetic enhancements while mitigating risks of pathology associated with TGF-β excesses. Here, we examine the hypothesis that physiologic doses of TGF-β can yield neocartilage with a more hyaline cartilage-like composition and structure relative to conventionally administered supraphysiologic doses. This hypothesis was examined on a model system of reduced-size constructs (∅2 × 2 mm or ∅3 × 2 mm) comprised of bovine chondrocytes encapsulated in agarose, which exhibit mitigated TGF-β spatial gradients allowing for an evaluation of the intrinsic effect of TGF-β doses on tissue development. Reduced-size (∅2 × 2 mm or ∅3 × 2 mm) and conventional-size constructs (∅4-∅6 mm × 2 mm) were subjected to a range of physiologic (0.1, 0.3, 1 ng/mL) and supraphysiologic (3, 10 ng/mL) TGF-β doses. At day 56, the physiologic 0.3 ng/mL dose yielded reduced-size constructs with native cartilage-matched Young's modulus (E<sub>Y</sub>) (630 ± 58 kPa) and sulfated glycosaminoglycan (sGAG) content (5.9 ± 0.6%) while significantly increasing the sGAG-to-collagen ratio, leading to significantly reduced tissue swelling relative to constructs exposed to the supraphysiologic 10 ng/mL TGF-β dose. Furthermore, reduced-size constructs exposed to the 0.3 ng/mL dose exhibited a significant reduction in fibrocartilage-associated COL-I and a 77% reduction in the fraction of chondrocytes present in a clustered morphology, relative to the supraphysiologic 10 ng/mL dose (<i>p</i> < 0.001). E<sub>Y</sub> was significantly lower for conventional-size constructs exposed to physiologic doses due to TGF-β transport limitations in these larger tissues (<i>p</i> < 0.001). Overall, physiologic TGF-β appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating features detrimental to hyaline cartilage function. While reduced-size constructs are not suitable for the repair of clinical-size cartilage lesions, insights from this work can inform TGF-β dosing requirements for emerging scaffold release or nutrient channel delivery platforms capable of achieving uniform delivery of physiologic TGF-β doses to larger constructs required for clinical cartilage repair.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"56-68"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信