{"title":"4D Printed Nerve Conduit with <i>In Situ</i> Neurogenic Guidance for Nerve Regeneration.","authors":"Haitao Cui, Wei Zhu, Shida Miao, Kausik Sarkar, Lijie Grace Zhang","doi":"10.1089/ten.TEA.2023.0194","DOIUrl":"10.1089/ten.TEA.2023.0194","url":null,"abstract":"<p><p>Nerve repair poses a significant challenge in the field of tissue regeneration. As a bioengineered therapeutic method, nerve conduits have been developed to address damaged nerve repair. However, despite their remarkable potential, it is still challenging to encompass complex physiologically microenvironmental cues (both biophysical and biochemical factors) to synergistically regulate stem cell differentiation within the implanted nerve conduits, especially in a facile manner. In this study, a neurogenic nerve conduit with self-actuated ability has been developed by <i>in situ</i> immobilization of neurogenic factors onto printed architectures with aligned microgrooves. One objective was to facilitate self-entubulation, ultimately enhancing nerve repairs. Our results demonstrated that the integration of topographical and <i>in situ</i> biological cues could accurately mimic native microenvironments, leading to a significant improvement in neural alignment and enhanced neural differentiation within the conduit. This innovative approach offers a revolutionary method for fabricating multifunctional nerve conduits, capable of modulating neural regeneration efficiently. It has the potential to accelerate the functional recovery of injured neural tissues, providing a promising avenue for advancing nerve repair therapies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"293-303"},"PeriodicalIF":4.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mian Wang, Wanlu Li, Regina Sanchez Flores, Ling Cai, Carlos Ezio Garciamendez-Mijares, Scott Gill, David Snyder, Jasmine Millabas, David Chafin, Yu Shrike Zhang, Azita Djalilvand
{"title":"Bioprinted Human Lung Cancer-Mimics for Tissue Diagnostics Applications.","authors":"Mian Wang, Wanlu Li, Regina Sanchez Flores, Ling Cai, Carlos Ezio Garciamendez-Mijares, Scott Gill, David Snyder, Jasmine Millabas, David Chafin, Yu Shrike Zhang, Azita Djalilvand","doi":"10.1089/ten.TEA.2023.0149","DOIUrl":"10.1089/ten.TEA.2023.0149","url":null,"abstract":"<p><p>Developing a reproducible and secure supply of customizable control tissues that standardizes for the cell type, tissue architecture, and preanalytics of interest for usage in applications including diagnostic, prognostic, and predictive assays, is critical for improving our patient care and welfare. The conventionally adopted control tissues directly obtained from patients are not ideal because they oftentimes have different amounts of normal and neoplastic elements, differing cellularity, differing architecture, and unknown preanalytics, in addition to the limited supply availability and thus associated high costs. In this study, we demonstrated a strategy to stably produce tissue-mimics for diagnostics purposes by taking advantage of the three-dimensional (3D) bioprinting technology. Specifically, we take anaplastic lymphoma kinase-positive (Alk+) lung cancer as an example, where a micropore-forming bioink laden with tumor cells was combined with digital light processing-based bioprinting for developing native-like Alk+ lung cancer tissue-mimics with both structural and functional relevancy. It is anticipated that our proposed methodology will pave new avenues for both fields of tissue diagnostics and 3D bioprinting significantly expanding their capacities, scope, and sustainability.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"270-279"},"PeriodicalIF":4.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial for Special Issue on \"Bioprinting\".","authors":"Lijie G Zhang, John Fisher","doi":"10.1089/ten.TEA.2024.0128","DOIUrl":"10.1089/ten.TEA.2024.0128","url":null,"abstract":"","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"255"},"PeriodicalIF":4.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Océane Messaoudi, Christel Henrionnet, Edwin-Joffrey Courtial, Laurent Grossin, Didier Mainard, Laurent Galois, Damien Loeuille, Christophe Marquette, Pierre Gillet, Astrid Pinzano
{"title":"Increasing Collagen to Bioink Drives Mesenchymal Stromal Cells-Chondrogenesis from Hyaline to Calcified Layers.","authors":"Océane Messaoudi, Christel Henrionnet, Edwin-Joffrey Courtial, Laurent Grossin, Didier Mainard, Laurent Galois, Damien Loeuille, Christophe Marquette, Pierre Gillet, Astrid Pinzano","doi":"10.1089/ten.TEA.2023.0178","DOIUrl":"10.1089/ten.TEA.2023.0178","url":null,"abstract":"<p><p>The bioextrusion of mesenchymal stromal cells (MSCs) directly seeded in a bioink enables the production of three-dimensional (3D) constructs, promoting their chondrogenic differentiation. Our study aimed to evaluate the effect of different type I collagen concentrations in the bioink on MSCs' chondrogenic differentiation. We printed 3D constructs using an alginate, gelatin, and fibrinogen-based bioink cellularized with MSCs, with four different quantities of type I collagen addition (0.0, 0.5, 1.0, and 5.0 mg per bioink syringe). We assessed the influence of the bioprinting process, the bioink composition, and the growth factor (TGF-ꞵ1) on the MSCs' survival rate. We confirmed the biocompatibility of the process and the bioinks' cytocompatibility. We evaluated the chondrogenic effects of TGF-ꞵ1 and collagen addition on the MSCs' chondrogenic properties through macroscopic observation, shrinking ratio, reverse transcription polymerase chain reaction, glycosaminoglycan synthesis, histology, and type II collagen immunohistochemistry. The bioink containing 0.5 mg of collagen produces the richest hyaline-like extracellular matrix, presenting itself as a promising tool to recreate the superficial layer of hyaline cartilage. The bioink containing 5.0 mg of collagen enhances the synthesis of a calcified matrix, making it a good candidate for mimicking the calcified cartilaginous layer. Type I collagen thus allows the dose-dependent design of specific hyaline cartilage layers.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"322-332"},"PeriodicalIF":3.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54232451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dora Evelyn Ibarra, Maggie E Jewett, Dillon K Jarrell, Armando Pinales, Mitchell C VeDepo, Jeffrey G Jacot
{"title":"Bioreactor Design for Culturing Vascularized Engineered Tissue in Flow Conditions.","authors":"Dora Evelyn Ibarra, Maggie E Jewett, Dillon K Jarrell, Armando Pinales, Mitchell C VeDepo, Jeffrey G Jacot","doi":"10.1089/ten.TEA.2023.0201","DOIUrl":"10.1089/ten.TEA.2023.0201","url":null,"abstract":"<p><p><b><i>Background:</i></b> Current treatments for congenital heart defects often require surgery and implantation of a synthetic patch or baffle that becomes a fibrous scar and leads to a high number of reoperations. Previous studies in rats have shown that a prevascularized scaffold can integrate into the heart and result in regions of vascularized and muscularized tissue. However, increasing the thickness of this scaffold for use in human hearts requires a method to populate the thick scaffold and mature it under physiologic flow and electrical conditions. <b><i>Experiment:</i></b> We developed a bioreactor system that can perfuse up to six 7 mm porous scaffolds with tunable gravity-mediated flow and chronic electrical stimulation. Three polymers, which have been reported to be biocompatible, were evaluated for effects on the viability of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM). Bioreactor flow and electrical stimulation functions were tested, and the bioreactor was operated for up to 7 days to ensure reliability and lack of leaks in a 37°C, humidified incubator. Height and flow relationships were measured for perfusion through an electrospun polycaprolactone and gelatin scaffold, previously reported by our laboratory. Culture with cells was evaluated by plating human umbilical vein endothelial cells and human dermal fibroblasts on top of the scaffolds in both static and flow conditions for 2, 5, and 7 days. As a proof-of concept, scaffolds were cryosectioned and cell infiltration was quantified using immunofluorescence staining. <b><i>Results:</i></b> Neither MED610 (Stratasys), Vero (Stratasys), nor FORMLAB materials affected the viability of iPSC-CM, and MED610 was chosen for manufacture due to familiarity of 3D printing from this material. The generation of electrical field stimulation from 0 to 5 V and physiological ranges of pump capacities were verified. The relationship between height and flow was calculated for scaffolds with and without cells. Finally, we demonstrated evaluation of cell depth and structure in scaffolds cultured for 2, 5, and 7 days. <b><i>Conclusion:</i></b> The gravity-mediated flow bioreactor system we developed can be used as a platform for 3D cell culture particularly designed for perfusing vascularized tissue constructs with electrical stimulation for cardiac maturation.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"304-313"},"PeriodicalIF":4.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-Dimensional Bioprinting of Organoids: Past, Present, and Prospective.","authors":"Mariana Cabral, Ke Cheng, Donghui Zhu","doi":"10.1089/ten.TEA.2023.0209","DOIUrl":"10.1089/ten.TEA.2023.0209","url":null,"abstract":"<p><p>Organoids are three-dimensional (3D) <i>in vitro</i> tissue models that are derived from stem cells and can closely mimic the structure and function of human organs. The ability to create organoids that recapitulate the complex cellular architecture of organs has emerged as an innovative technique in biomedical research and drug development. However, traditional methods of organoid culture are time consuming and often yield low quantities of cells, which has led to the development of 3D bioprinting of organoids from bioinks containing suspended cells and desired scaffolds. A comparison across different organoid-building techniques, focusing on 3D bioprinting and its benefits, may be helpful and was yet to be distinguished. The goal of this review is to provide an overview of the current state of 3D bioprinting of organoids and its potential applications in tissue engineering, drug screening, and regenerative medicine.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"314-321"},"PeriodicalIF":3.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Factors Affecting the Evaluation of Collagen Deposition and Fibrosis <i>In Vitro</i>.","authors":"Parinaz Fathi, Vanathi Sundaresan, Andrea Lucia Alfonso, Anagha Rama Varma, Kaitlyn Sadtler","doi":"10.1089/ten.TEA.2023.0284","DOIUrl":"10.1089/ten.TEA.2023.0284","url":null,"abstract":"<p><p>Immune responses to biomedical implants, wound healing, and diseased tissues often involve collagen deposition by fibroblasts and other stromal cells. Dysregulated collagen deposition can lead to complications, such as biomaterial fibrosis, cardiac fibrosis, desmoplasia, liver fibrosis, and pulmonary fibrosis, which can ultimately result in losses of organ function or failure of biomedical implants. Current <i>in vitro</i> methods to induce collagen deposition include growing the cells under macromolecular crowding conditions or on fibronectin-coated surfaces. However, the majority of these methods have been demonstrated with a single cell line, and the combined impacts of culture conditions and postculture processing on collagen deposition have not been explored in detail. In this work, the effects of macromolecular crowding versus fibronectin coating, fixation with methanol versus fixation with paraformaldehyde, and use of plastic substrates versus glass substrates were evaluated using the WI-38 human lung fibroblast cell line. Fibronectin coating was found to provide enhanced collagen deposition under macromolecular crowding conditions, while a higher plating density led to improved collagen I deposition compared with macromolecular crowding. Collagen deposition was found to be more apparent on plastic substrates than on glass substrates. The effects of primary cells versus cell lines, and mouse cells versus human cells, were evaluated using WI-38 cells, primary human lung fibroblasts, primary human dermal fibroblasts, primary mouse lung fibroblasts, primary mouse dermal fibroblasts, and the L929 mouse fibroblast cell line. Cell lines exhibited enhanced collagen I deposition compared with primary cells. Furthermore, collagen deposition was quantified with picrosirius red staining, and plate-based drug screening through picrosirius red staining of decellularized extracellular matrices was demonstrated. The results of this study provide detailed conditions under which collagen deposition can be induced <i>in vitro</i> in multiple cell types, with applications including material development, development of potential antifibrotic therapies, and mechanistic investigation of disease pathways. Impact Statement This study demonstrated the effects of cell type, biological conditions, fixative, culture substrate, and staining method on <i>in vitro</i> collagen deposition and visualization. Further the utility of plate-based picrosirius red staining of decellularized extracellular matrices for drug screening through collagen quantification was demonstrated. These results should provide clarity and a path forward for researchers who aim to conduct <i>in vitro</i> experiments on collagen deposition.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"367-380"},"PeriodicalIF":3.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrienne K Scott, Katie M Gallagher, Stephanie E Schneider, Abhijit Kurse, Corey P Neu
{"title":"Epigenetic Priming Enhances Chondrogenic Potential of Expanded Chondrocytes.","authors":"Adrienne K Scott, Katie M Gallagher, Stephanie E Schneider, Abhijit Kurse, Corey P Neu","doi":"10.1089/ten.TEA.2023.0170","DOIUrl":"10.1089/ten.TEA.2023.0170","url":null,"abstract":"<p><p>Expansion of chondrocytes presents a major obstacle in the cartilage regeneration procedure, such as matrix-induced autologous chondrocyte implantation. Dedifferentiation of chondrocytes during the expansion process leads to the emergence of a fibrotic (chondrofibrotic) phenotype that decreases the chondrogenic potential of the implanted cells. We aim to (1) determine the extent that chromatin architecture of H3K27me3 and H3K9me3 remodels during dedifferentiation and persists after the transfer to a three-dimensional (3D) culture; and (2) to prevent this persistent remodeling to enhance the chondrogenic potential of expanded bovine chondrocytes, used as a model system. Chromatin architecture remodeling of H3K27me3 and H3K9me3 was observed at 0 population doublings, 8 population doublings, and 16 population doublings (PD16) in a two-dimensional (2D) culture and after encapsulation of the expanded chondrocytes in a 3D hydrogel culture. Chondrocytes were treated with inhibitors of epigenetic modifiers (epigenetic priming) for PD16 and then encapsulated in 3D hydrogels. Chromatin architecture of chondrocytes and gene expression were evaluated before and after encapsulation. We observed a change in chromatin architecture of epigenetic modifications H3K27me3 and H3K9me3 during chondrocyte dedifferentiation. Although inhibiting enzymes that modify H3K27me3 and H3K9me3 did not alter the dedifferentiation process in 2D culture, applying these treatments during the 2D expansion did increase the expression of select chondrogenic genes and protein deposition of type II collagen when transferred to a 3D environment. Overall, we found that epigenetic priming of expanded bovine chondrocytes alters the cell fate when chondrocytes are later encapsulated into a 3D environment, providing a potential method to enhance the success of cartilage regeneration procedures.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"415-425"},"PeriodicalIF":4.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial Trachea from Microtissue Engineering and Three-Dimensional Printing for Tracheal Personalized Repair.","authors":"Chao Qi, Lu Cheng, Chuanqi Huang","doi":"10.1089/ten.TEA.2023.0171","DOIUrl":"10.1089/ten.TEA.2023.0171","url":null,"abstract":"<p><p>Millions of people suffer from tracheal defect worldwide each year, while autograft and allograft cannot meet existing treatment needs. Tissue-engineered trachea substitutes represent a promising treatment for tracheal defect, while lack of precisely personalized treatment abilities. Therefore, development of an artificial trachea that can be used for personalized transplantation is highly desired. In this study, we report the design and fabrication of an artificial trachea based on sericin microsphere (SM) by microtissue engineering technology and three-dimensional (3D) printing for personalized repair of tracheal defect. The SM possessed natural cell adhesion and promoting cell proliferation ability. Then, the microtissue was fabricated by coincubation of SM with chondrocytes and tracheal epithelial cells. This microtissue displayed good cytocompatibility and could support seed cell adhesion and proliferation. After that, this microtissue was individually assembled to form an artificial trachea by 3D printing. Notably, artificial trachea had an encouraging complete cartilaginous and epithelial structure after transplantation. Furthermore, the artificial trachea molecularly resembled native trachea as evidenced by similar expression of trachea-critical genes. Altogether, the work demonstrates the effectiveness of microtissue engineering and 3D printing for individual construction of artificial trachea, providing a promising approach for personalized treatment of tracheal defect.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"393-403"},"PeriodicalIF":4.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eileen Y Su, Christopher S Kennedy, Emmanuel E Vega-Soto, Brooke D Pallas, Samantha N Lukpat, Derek H Hwang, David W Bosek, Celeste E Forester, Claudia Loebel, Lisa M Larkin
{"title":"Repairing Volumetric Muscle Loss with Commercially Available Hydrogels in an Ovine Model.","authors":"Eileen Y Su, Christopher S Kennedy, Emmanuel E Vega-Soto, Brooke D Pallas, Samantha N Lukpat, Derek H Hwang, David W Bosek, Celeste E Forester, Claudia Loebel, Lisa M Larkin","doi":"10.1089/ten.TEA.2023.0240","DOIUrl":"10.1089/ten.TEA.2023.0240","url":null,"abstract":"<p><p>Volumetric muscle loss (VML) is the loss of skeletal muscle that exceeds the muscle's self-repair mechanism and leads to permanent functional deficits. In a previous study, we demonstrated the ability of our scaffold-free, multiphasic, tissue-engineered skeletal muscle units (SMUs) to restore muscle mass and force production. However, it was observed that the full recovery of muscle structure was inhibited due to increased fibrosis in the repair site. As such, novel biomaterials such as hydrogels (HGs) may have significant potential for decreasing the acute inflammation and subsequent fibrosis, as well as enhancing skeletal muscle regeneration following VML injury and repair. The goal of the current study was to assess the biocompatibility of commercially available poly(ethylene glycol), methacrylated gelatin, and hyaluronic acid (HA) HGs in combination with our SMUs to treat VML in a clinically relevant large animal model. An acute 30% VML injury created in the sheep peroneus tertius (PT) muscle was repaired with or without HGs and assessed for acute inflammation (incision swelling) and white blood cell counts in blood for 7 days. At the 7-day time point, HA was selected as the HG to use for the combined HG/SMU repair, as it exhibited a reduced inflammation response compared to the other HGs. Six weeks after implantation, all groups were assessed for gross and histological structural recovery. The results showed that the groups repaired with an SMU (SMU-Only and SMU+HA) restored muscle mass to greater degree than the groups with only HG and that the SMU groups had PT muscle masses that were statistically indistinguishable from its uninjured contralateral PT muscle. Furthermore, the HA HG, SMU-Only, and SMU+HA groups displayed notable efficacy in diminishing pro-inflammatory markers and showed an increased number of regenerating muscle fibers in the repair site. Taken together, the data demonstrates the efficacy of HA HG in decreasing acute inflammation and fibrotic response. The combination of HA and our SMUs also holds promise to decrease acute inflammation and fibrosis and increase muscle regeneration, advancing this combination therapy toward clinically relevant interventions for VML injuries in humans.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"440-453"},"PeriodicalIF":4.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}