Jacob D Weston, Brooke Austin, Hunter Levis, Jared Zitnay, Jeffrey A Weiss, Brandon Lawrence, Robby D Bowles
{"title":"Toward the Development of a Tissue Engineered Gradient Utilizing CRISPR-Guided Gene Modulation.","authors":"Jacob D Weston, Brooke Austin, Hunter Levis, Jared Zitnay, Jeffrey A Weiss, Brandon Lawrence, Robby D Bowles","doi":"10.1089/ten.TEA.2023.0352","DOIUrl":"10.1089/ten.TEA.2023.0352","url":null,"abstract":"<p><p>Cellular, compositional, and mechanical gradients are found throughout biological tissues, especially in transition zones between tissue types. Yet, strategies to engineer such gradients have proven difficult due to the complex nature of these tissues. Current strategies for tissue engineering complex gradients often utilize stem cells; however, these multipotent cells require direction from environmental cues, which can be difficult to control both <i>in vitro</i> and <i>in vivo</i>. In this study, we utilize clustered regularly-interspaced short palindromic repeats (CRISPR)-guided gene modulation to direct the differentiation of multipotent adipose-derived stem cells (ASCs) to demonstrate the effectiveness of CRISPR-engineered cells in tissue engineering applications. Specifically, we screen CRISPR-interference (CRISPRi) constructs targeting the promotors of selected osteogenic inhibitors and demonstrate that ASC osteogenic differentiation and mineral deposition can be regulated with CRISPRi targeting of Noggin without the use of exogenous growth factors in tissue engineered constructs. As a proof of concept, we combine three technologies developed out of our laboratories to demonstrate the controlled deposition of these engineered cells in a gradient with CRISPR-activation multiplex-engineered aggrecan/collagen type-II-chondrogenic ASCs on a high density anisotropic type I collagen construct to create a cell and tissue gradient similar to the fibrocartilage-to-mineralized-fibrocartilage gradient in the enthesis. Our results display the promise of CRISPR-engineered ASCs to produce tissue gradients, similar to what is observed in native tissue.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"525-535"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nazmiye Celik, Srinivas V Koduru, Dino J Ravnic, Ibrahim T Ozbolat, Daniel J Hayes
{"title":"Posttranscriptional Modification to Modulate Progenitor Differentiation on Heterotypic Spheroids.","authors":"Nazmiye Celik, Srinivas V Koduru, Dino J Ravnic, Ibrahim T Ozbolat, Daniel J Hayes","doi":"10.1089/ten.TEA.2023.0279","DOIUrl":"10.1089/ten.TEA.2023.0279","url":null,"abstract":"<p><p>Cell aggregates are widely used to study heterotypic cellular interactions during the development of vascularization <i>in vitro</i>. In this study, we examined heterotypic cellular spheroids made of adipose-derived stem cells and CD34<sup>+</sup>/CD31<sup>-</sup> endothelial progenitor cells induced by the transfection of miR-148b mimic for <i>de novo</i> induction of osteogenic differentiation and miR-210 mimic for <i>de novo</i> induction of endotheliogenesis, respectively. The effect of the microRNA (miRs) mimic treatment group and induction time on codifferentiation was assessed in spheroids formed of transfected cells over the course of a 4-week culture. Based on gene and protein markers of osteogenic and endotheliogenic differentiation, as well as mineralization assays, our results showed that miRs directed cell differentiation and that progenitor maturity influenced the development of heterotypic cellular regions in aggregates. Overall, the success of coculture to create a prevascularized bone model is dependent on a number of factors, particularly the induction time of differentiation before combining the multiple cell types in aggregates. The approach that has been proposed could be valuable in creating vascularized bone tissue by employing spheroids as the building blocks of more complex issues through the use of cutting-edge methods such as 3D bioprinting.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"536-549"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shan Jiang, Changyong Yuan, Ting Zou, Jun Hao Koh, Mohammed Basabrain, Qixin Chen, Junqing Liu, Boon Chin Heng, Lee Wei Lim, Penglai Wang, Chengfei Zhang
{"title":"An Injectable Hydrogel Loaded with GMSCs-Derived Neural Lineage Cells Promotes Recovery after Stroke.","authors":"Shan Jiang, Changyong Yuan, Ting Zou, Jun Hao Koh, Mohammed Basabrain, Qixin Chen, Junqing Liu, Boon Chin Heng, Lee Wei Lim, Penglai Wang, Chengfei Zhang","doi":"10.1089/ten.TEA.2023.0330","DOIUrl":"10.1089/ten.TEA.2023.0330","url":null,"abstract":"<p><p>Ischemic stroke is a devastating medical condition with poor prognosis due to the lack of effective treatment modalities. Transplantation of human neural stem cells or primary neural cells is a promising treatment approach, but this is hindered by limited suitable cell sources and low <i>in vitro</i> expansion capacity. This study aimed (1) use small molecules (SM) to reprogram gingival mesenchymal stem cells (GMSCs) commitment to the neural lineage cells <i>in vitro</i>, and (2) use hyaluronic acid (HA) hydrogel scaffolds seeded with GMSCs-derived neural lineage cells to treat ischemic stroke <i>in vivo</i>. Neural induction was carried out with a SM cocktail-based one-step culture protocol over a period of 24 h. The induced cells were analyzed for expression of neural markers with immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). The Sprague-Dawley (SD) rats (<i>n</i> = 100) were subjected to the middle cerebral artery occlusion (MCAO) reperfusion ischemic stroke model. Then, after 8 days post-MCAO, the modeled rats were randomly assigned to six study groups (<i>n</i> = 12 per group): (1) GMSCs, (2) GMSCs-derived neural lineage cells, (3) HA and GMSCs-derived neural lineage cells, (4) HA, (5) PBS, and (6) sham transplantation control, and received their respective transplantation. Evaluation of post-stroke recovery were performed by behavioral tests and histological assessments. The morphologically altered nature of neural lineages has been observed of the GMSCs treated with SMs compared to the untreated controls. As shown by the qRT-PCR and immunocytochemistry, SMs further significantly enhanced the expression level of neural markers of GMSCs as compared with the untreated controls (all <i>p</i> < 0.05). Intracerebral injection of self-assembling HA hydrogel carrying GMSCs-derived neural lineage cells promoted the recovery of neural function and reduced ischemic damage in rats with ischemic stroke, as demonstrated by histological examination and behavioral assessments (all <i>p</i> < 0.05). In conclusion, the SM cocktail significantly enhanced the differentiation of GMSCs into neural lineage cells. The HA hydrogel was found to facilitate the proliferation and differentiation of GMSCs-derived neural lineage cells. Furthermore, HA hydrogel seeded with GMSCs-derived neural lineage cells could promote tissue repair and functional recovery in rats with ischemic stroke and may be a promising alternative treatment modality for stroke.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"563-576"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily D Lindberg, Serra Kaya, Amir A Jamali, Tamara Alliston, Grace D O'Connell
{"title":"Effect of Passaging on Bovine Chondrocyte Gene Expression and Engineered Cartilage Production.","authors":"Emily D Lindberg, Serra Kaya, Amir A Jamali, Tamara Alliston, Grace D O'Connell","doi":"10.1089/ten.TEA.2023.0349","DOIUrl":"10.1089/ten.TEA.2023.0349","url":null,"abstract":"<p><p>Tissue engineering strategies show great potential for repairing osteochondral defects in osteoarthritic joints; however, these approaches often rely on passaging cells multiple times to obtain enough cells to produce functional tissue. Unfortunately, monolayer expansion culture causes chondrocyte dedifferentiation, which is accompanied by a phenotypical and morphological shift in chondrocyte properties that leads to a reduction in the quality of <i>de novo</i> cartilage produced. Thus, the objective of this study was to evaluate transcriptional variations during <i>in vitro</i> expansion culture and determine how differences in cell phenotype from monolayer expansion alter development of functional engineered cartilage. We used an unbiased approach to explore genome-wide transcriptional differences in chondrocyte phenotype at passage 1 (P1), P3, and P5, and then seeded cells into hydrogel scaffolds at P3 and P5 to assess cells' abilities to produce cartilaginous extracellular matrix in three dimensional (3D). We identified distinct phenotypic differences, specifically for genes related to extracellular organization and cartilage development. Both P3 and P5 chondrocytes were able to produce chondrogenic tissue in 3D, with P3 cells producing matrix with greater compressive properties and P5 cells secreting matrix with higher glycosaminoglycan/DNA and collagen/DNA ratios. Furthermore, we identified 24 genes that were differentially expressed with passaging and enriched in human osteoarthritis (OA) genome-wide association studies, thereby prioritizing them as functionally relevant targets to improve protocols that recapitulate functional healthy cartilage with cells from adult donors. Specifically, we identified novel genes, such as <i>TMEM190</i> and <i>RAB11FIP4</i>, which were enriched with human hip OA and may play a role in chondrocyte dedifferentiation. This work lays the foundation for several pathways and genes that could be modulated to enhance the efficacy for chondrocyte culture for tissue regeneration, which could have transformative impacts for cell-based cartilage repair strategies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"512-524"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichong Zhang, Alina Yao, Jun Wu, Shuhong Li, Minyao Wang, Zexu Peng, Hsing-Wen Sung, Baoguo Jiang, Ren-Ke Li
{"title":"Conductive Hydrogel Restores Electrical Conduction to Promote Neurological Recovery in a Rat Model.","authors":"Yichong Zhang, Alina Yao, Jun Wu, Shuhong Li, Minyao Wang, Zexu Peng, Hsing-Wen Sung, Baoguo Jiang, Ren-Ke Li","doi":"10.1089/ten.TEA.2023.0372","DOIUrl":"10.1089/ten.TEA.2023.0372","url":null,"abstract":"<p><p>Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"577-587"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Tarantino, Halie Mei Jensen, Stephen D Waldman
{"title":"<sup>13</sup>C Metabolic Flux Analysis in Chondrocytes Reveals a Novel Switch in Metabolic Phenotype.","authors":"Roberto Tarantino, Halie Mei Jensen, Stephen D Waldman","doi":"10.1089/ten.TEA.2023.0321","DOIUrl":"10.1089/ten.TEA.2023.0321","url":null,"abstract":"<p><p>Chondrocytes are typically known for their anaerobic metabolism both <i>in vivo</i> and under culture conditions <i>in vitro</i>. However, chondrocytes have been shown to display greater biosynthetic activity when subjected to conditions that elicit aerobic metabolism. We have previously shown that tissue formation by chondrocytes can be upregulated by controlling nutrient availability and that this response arises from changes in glucose metabolism. The aim of the present study was to further characterize these changes through <sup>13</sup>C-metabolic flux analysis (<sup>13</sup>C-MFA), as well as to determine the most optimal response. Primary bovine chondrocytes were grown in scaffold-free high-density tissue culture. [U-<sup>13</sup>C] glucose labeling experiments were combined with a tissue-specific metabolic network model to carry out <sup>13</sup>C-MFA under varying levels of nutrient availability. <sup>13</sup>C-MFA results demonstrated that when subjected to increasing nutrient availability, chondrocytes switch from a predominately anaerobic to a mixed aerobic-anaerobic phenotype. This metabolic switch was attributed to the saturation of the lactate fermentation pathway and metabolite overflow toward the tricarboxylic acid cycle. This effect appears to be similar to, but the inverse of, the Crabtree effect (\"inverse Crabtree effect\"). The relationships between metabolic flux and nutrient availability were then utilized to identify culture conditions that promote enhanced tissue formation. This novel metabolic effect presents a simple but effective approach for enhancing the biosynthetic response of chondrocytes-a key requirement to develop functional engineered cartilaginous tissue for joint resurfacing.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"550-562"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptomics Demonstrates Significant Biological Effect of Growing Stem Cells on RGD-Cotton Scaffold.","authors":"Sihem Aouabdi, Taoufik Nedjadi, Rawiah Alsiary, Fouzi Mouffouk, Hifzur Rahman Ansari","doi":"10.1089/ten.TEA.2023.0333","DOIUrl":"10.1089/ten.TEA.2023.0333","url":null,"abstract":"<p><p>Stem cell therapy provides a viable alternative treatment for degenerated or damaged tissue. Stem cells have been used either alone or in conjunction with an artificial scaffold. The latter provides a structural advantage by enabling the cells to thrive in three-dimensional (3D) settings, closely resembling the natural <i>in vivo</i> environments. Previously, we disclosed the development of a 3D scaffold made from cotton, which was conjugated with arginyl-glycyl-aspartic acid (RGD), to facilitate the growth and proliferation of mesenchymal stem cells (MSCs). This scaffold allowed the MSCs to adhere and proliferate without compromising their viability or their stem cell markers. A comprehensive analysis investigation of the molecular changes occurring in MSCs adhering to the cotton fibers will contribute to the advancement of therapy. The objective of this study is to analyze the molecular processes occurring in the growth of MSCs on a cotton-RGD conjugated-based scaffold by examining their gene expression profiles. To achieve this, we conducted an experiment where MSCs were seeded with and without the scaffold for a duration of 48 h. Subsequently, cells were collected for RNA extraction, cDNA synthesis, and whole-transcriptomic analysis performed on both populations. Our analysis revealed several upregulated and downregulated differently expressed genes in the MSCs adhering to the scaffold compared with the control cells. Through gene ontology analysis, we were able to identify enriched biological processes, molecular functions, pathways, and protein-protein interactions in these differentially expressed genes. Our data suggest that the scaffold may have the potential to enhance osteogenesis in the MSCs. Furthermore, our results indicate that the scaffold does not induce oxidative stress, inflammation, or aging in the MSCs. These findings provide valuable insights for the application of MSCs in tissue engineering and regenerative medicine.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"485-498"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Zheng, Yong Chen, Ziyao Wang, Chen Xie, Chi Zhou, Le Wang, Fang Xiong, Ling Li, Jun Xing, Cai Wang, Hongfu Zhou
{"title":"Promoting a Cobalt Complex of Qingzhuan Dark Tea Polysaccharides on Fracture Healing in Rats.","authors":"Min Zheng, Yong Chen, Ziyao Wang, Chen Xie, Chi Zhou, Le Wang, Fang Xiong, Ling Li, Jun Xing, Cai Wang, Hongfu Zhou","doi":"10.1089/ten.TEA.2023.0125","DOIUrl":"10.1089/ten.TEA.2023.0125","url":null,"abstract":"<p><p>Fractures occur commonly with multiple injuries, and their incidence has increased in recent years. Trace amounts of cobalt are necessary for many living organisms as it stimulates hematopoiesis and improves bone health. However, cobalt is also toxic, as it might cause allergic reactions and tissue destruction. These factors limit the application of cobalt in some medical fields. We studied the tea polysaccode-cobalt complex (TPS-Co) prepared from Qingzhuan Dark Tea polysaccharides. We used 6-week-old Sprague-Dawley rats to establish a femoral fracture model and evaluated the effects of CoCl<sub>2</sub> and TPS-Co on the healing of femoral fractures. In this study, treatment with TPS-Co for the same content of cobalt intake decreased the side effects associated with CoCl<sub>2</sub> treatment and accelerated the healing of femoral fractures in rats. This treatment method promoted angiogenesis by upregulating the expression of vascular endothelial growth factor and hypoxia-inducible factor. Bone formation was promoted via the upregulation of the expression of bone morphogenetic protein 2 and serum bone alkaline phosphatase. TPS-Co was found to actively regulate bone and vascular systems, resulting in significant bone regeneration effects. Therefore, the Qingzhuan Dark Tea polysaccharide cobalt complex might be used as an additive or drug to promote fracture healing, and thus, it might have a huge market value.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"437-446"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linh Thi Thuy Le, Ngoc Chien Pham, Xuan-Tung Trinh, Ngan Giang Nguyen, Van Long Nguyen, Sun-Young Nam, Chan-Yeong Heo
{"title":"Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine.","authors":"Linh Thi Thuy Le, Ngoc Chien Pham, Xuan-Tung Trinh, Ngan Giang Nguyen, Van Long Nguyen, Sun-Young Nam, Chan-Yeong Heo","doi":"10.1089/ten.TEA.2023.0228","DOIUrl":"10.1089/ten.TEA.2023.0228","url":null,"abstract":"<p><p>Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO<sub>2</sub>)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The <i>in vivo</i> experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO<sub>2</sub> has been successfully used in tissue engineering.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"447-459"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcelle Uiterwijk, Bram F Coolen, Jan-Willem van Rijswijk, Serge H M Söntjens, Michel H C J van Houtem, Wojciech Szymczyk, Laura Rijns, Henk M Janssen, Allard van de Wal, Bas A J M de Mol, Carlijn V C Bouten, Gustav J Strijkers, Patricia Y W Dankers, Jolanda Kluin
{"title":"Balancing Scaffold Degradation and Neo-Tissue Formation in <i>In Situ</i> Tissue Engineered Vascular Grafts.","authors":"Marcelle Uiterwijk, Bram F Coolen, Jan-Willem van Rijswijk, Serge H M Söntjens, Michel H C J van Houtem, Wojciech Szymczyk, Laura Rijns, Henk M Janssen, Allard van de Wal, Bas A J M de Mol, Carlijn V C Bouten, Gustav J Strijkers, Patricia Y W Dankers, Jolanda Kluin","doi":"10.1089/ten.TEA.2023.0019","DOIUrl":"10.1089/ten.TEA.2023.0019","url":null,"abstract":"<p><p>An essential aspect of cardiovascular <i>in situ</i> tissue engineering (TE) is to ensure balance between scaffold degradation and neo-tissue formation. We evaluated the rate of degradation and neo-tissue formation of three electrospun supramolecular bisurea-based biodegradable scaffolds that differ in their soft-block backbone compositions only. Scaffolds were implanted as interposition grafts in the abdominal aorta in rats, and evaluated at different time points (<i>t</i> = 1, 6, 12, 24, and 40 weeks) on function, tissue formation, strength, and scaffold degradation. The fully carbonate-based biomaterial showed minor degradation after 40 weeks <i>in vivo</i>, whereas the other two ester-containing biomaterials showed (near) complete degradation within 6-12 weeks. Local dilatation was only observed in these faster degrading scaffolds. All materials showed to some extent mineralization, at early as well as late time points. Histological evaluation showed equal and non-native-like neo-tissue formation after total degradation. The fully carbonate-based scaffolds lagged in neo-tissue formation, presumably as its degradation was (far from) complete at 40 weeks. A significant difference in vessel wall contrast enhancement was observed by magnetic resonance imaging between grafts with total compared with minimal-degraded scaffolds.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"421-436"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}