血色素和伊红结构揭示了胰腺癌的临床分化区。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-10-01 Epub Date: 2024-07-01 DOI:10.1089/ten.TEA.2024.0039
Jason L Guo, David M Lopez, Shamik Mascharak, Deshka S Foster, Anum Khan, Michael F Davitt, Alan T Nguyen, Austin R Burcham, Malini S Chinta, Nicholas J Guardino, Michelle Griffin, Elisabeth Miller, Michael Januszyk, Shyam S Raghavan, Teri A Longacre, Daniel J Delitto, Jeffrey A Norton, Michael T Longaker
{"title":"血色素和伊红结构揭示了胰腺癌的临床分化区。","authors":"Jason L Guo, David M Lopez, Shamik Mascharak, Deshka S Foster, Anum Khan, Michael F Davitt, Alan T Nguyen, Austin R Burcham, Malini S Chinta, Nicholas J Guardino, Michelle Griffin, Elisabeth Miller, Michael Januszyk, Shyam S Raghavan, Teri A Longacre, Daniel J Delitto, Jeffrey A Norton, Michael T Longaker","doi":"10.1089/ten.TEA.2024.0039","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer.\",\"authors\":\"Jason L Guo, David M Lopez, Shamik Mascharak, Deshka S Foster, Anum Khan, Michael F Davitt, Alan T Nguyen, Austin R Burcham, Malini S Chinta, Nicholas J Guardino, Michelle Griffin, Elisabeth Miller, Michael Januszyk, Shyam S Raghavan, Teri A Longacre, Daniel J Delitto, Jeffrey A Norton, Michael T Longaker\",\"doi\":\"10.1089/ten.TEA.2024.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2024.0039\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2024.0039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)是发病率呈上升趋势的唯一癌症之一,通常与瘤内和瘤周瘢痕(即脱钙)有关。这种瘢痕在细胞外基质(ECM)结构中具有高度异质性,在肿瘤生物学和临床结果中起着复杂的作用,目前尚未完全清楚。苏木精和伊红(H&E)是现有临床工作流程中使用的一种常规组织学染色法,我们使用这种染色法量化了 85 例患者样本中的 ECM 结构,以评估去瘤结构与存活时间和疾病复发等临床结果之间的关系。通过利用无监督机器学习(ML)总结 147 个基于 H&E 的局部(如纤维长度、坚实度)和全局(如纤维分支、孔隙度)特征的潜在空间,我们确定了与生存期和复发率差异相关的连续组织学结构。此外,我们还将 H&E 架构映射到 CO-Detection by indEXing(CODEX)参考图谱,揭示了肿瘤微环境中与结果阳性瘢痕相关的局部细胞和蛋白质壁龛。总之,我们的研究利用标准 H&E 染色发现了脱鳞组织与 PDAC 结局之间的临床相关性,提供了一个可转化的管道来支持预后决策,并为组织工程方法建模提供了空间生物因素蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer.

Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信