表面图案氧化氮化硅对肌管和神经突生长的影响。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Kamal Awad, Matthew Fiedler, Ahmed S Yacoub, Leticia Brotto, Pranesh B Aswath, Marco Brotto, Venu Varanasi
{"title":"表面图案氧化氮化硅对肌管和神经突生长的影响。","authors":"Kamal Awad, Matthew Fiedler, Ahmed S Yacoub, Leticia Brotto, Pranesh B Aswath, Marco Brotto, Venu Varanasi","doi":"10.1089/ten.tea.2024.0358","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic injuries lead to volumetric muscle loss (VML) and nerve damage that cause chronic functional deficits. Due to the inability of mammalian skeletal muscle to regenerate after VML damage, engineered scaffolds have been explored to address this challenge, but with limited success in functional restoration. We introduce novel bioactive amorphous silicon oxynitride (SiONx) biomaterials with surface properties and Si ion release to accelerate muscle and nerve cell differentiation for functional tissue regeneration. Micropatterned scaffolds were designed and developed on Si-wafer to test the effect of SiONx on myogenesis and neurogenesis. The scaffolds were created using UV photolithography to first pattern their surface, followed by the deposition of SiONx through plasma enhanced chemical vapor deposition (PECVD). X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) confirmed the uniform chemical structure of an amorphous SiONx film on the patterned surfaces. Atomic force microscopy and scanning electron microscopy (SEM) elucidated the surface morphology with a uniform 2 μm grating microstructure. The 2 µm pattern size is within the range of cellular dimensions, allowing for effective cell-surface interactions. Further, 2 µm features provide sufficient contact points for cell adhesion without overwhelming the cell's ability to interact with the surface. Two separate studies were conducted with SiONx biomaterials and Si ions alone. This was done to understand how Si ions impact cell response separate from the surfaces. C2C12 mouse myoblasts and NG108 neuronal cells were cultured on SiONx biomaterials. In separate studies, we tested the effect of Si ion treatments with these cells (cultured on tissue culture plastic). Cell culture studies demonstrated enhanced C2C12 myoblast attachment and proliferation on SiONx surfaces. High-resolution SEM and fluorescence images revealed highly aligned myotubes (from C2C12 cells) and axons (from NG108 cells) in a parallel direction to the micropatterned SiONx scaffolds. GAP43 expression, neurite outgrowth, and alignment were significantly increased with the Si-ions and SiONx biomaterials. These findings suggest that SiONx scaffolds enhance muscle and nerve cell adhesion and growth and promote the formation of aligned myotubes and axons on the pattern surfaces.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-Patterned Silicon Oxynitride for Aligned Myotubes and Neurite Outgrowth <i>In Vitro</i>.\",\"authors\":\"Kamal Awad, Matthew Fiedler, Ahmed S Yacoub, Leticia Brotto, Pranesh B Aswath, Marco Brotto, Venu Varanasi\",\"doi\":\"10.1089/ten.tea.2024.0358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic injuries lead to volumetric muscle loss (VML) and nerve damage that cause chronic functional deficits. Due to the inability of mammalian skeletal muscle to regenerate after VML damage, engineered scaffolds have been explored to address this challenge, but with limited success in functional restoration. We introduce novel bioactive amorphous silicon oxynitride (SiONx) biomaterials with surface properties and Si ion release to accelerate muscle and nerve cell differentiation for functional tissue regeneration. Micropatterned scaffolds were designed and developed on Si-wafer to test the effect of SiONx on myogenesis and neurogenesis. The scaffolds were created using UV photolithography to first pattern their surface, followed by the deposition of SiONx through plasma enhanced chemical vapor deposition (PECVD). X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) confirmed the uniform chemical structure of an amorphous SiONx film on the patterned surfaces. Atomic force microscopy and scanning electron microscopy (SEM) elucidated the surface morphology with a uniform 2 μm grating microstructure. The 2 µm pattern size is within the range of cellular dimensions, allowing for effective cell-surface interactions. Further, 2 µm features provide sufficient contact points for cell adhesion without overwhelming the cell's ability to interact with the surface. Two separate studies were conducted with SiONx biomaterials and Si ions alone. This was done to understand how Si ions impact cell response separate from the surfaces. C2C12 mouse myoblasts and NG108 neuronal cells were cultured on SiONx biomaterials. In separate studies, we tested the effect of Si ion treatments with these cells (cultured on tissue culture plastic). Cell culture studies demonstrated enhanced C2C12 myoblast attachment and proliferation on SiONx surfaces. High-resolution SEM and fluorescence images revealed highly aligned myotubes (from C2C12 cells) and axons (from NG108 cells) in a parallel direction to the micropatterned SiONx scaffolds. GAP43 expression, neurite outgrowth, and alignment were significantly increased with the Si-ions and SiONx biomaterials. These findings suggest that SiONx scaffolds enhance muscle and nerve cell adhesion and growth and promote the formation of aligned myotubes and axons on the pattern surfaces.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tea.2024.0358\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0358","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

外伤性损伤导致体积性肌肉损失(VML)和神经损伤,导致慢性功能缺陷。由于哺乳动物骨骼肌在VML损伤后无法再生,工程支架已经被探索来解决这一挑战,但在功能恢复方面取得的成功有限。我们介绍了一种具有表面特性和硅离子释放的新型生物活性非晶氧氮化硅(SiONx)生物材料,以加速肌肉和神经细胞的分化,实现功能性组织再生。在硅片上设计和制作微图案支架,以测试硅离子对肌肉和神经发生的影响。支架首先使用UV光刻技术对其表面进行图案处理,然后通过等离子体增强化学气相沉积(PECVD)沉积SiONx。x射线衍射(XRD)和能谱分析(EDS)证实了非晶硅薄膜在图案表面具有均匀的化学结构。原子力显微镜和扫描电镜(SEM)分析了表面形貌为均匀的2 μm光栅微观结构。2微米的图案尺寸在细胞尺寸范围内,允许有效的细胞表面相互作用。此外,2 μ m的特性为细胞粘附提供了足够的接触点,而不会破坏细胞与表面相互作用的能力。两项单独的研究分别用硅离子和硅离子进行。这样做是为了了解硅离子如何从表面分离影响电池的反应。在SiONx生物材料上培养C2C12小鼠成肌细胞和NG108神经元细胞。在单独的研究中,我们测试了硅离子处理对这些细胞(在组织培养塑料上培养)的影响。细胞培养研究表明,C2C12成肌细胞在SiONx表面的附着和增殖增强。高分辨率扫描电镜和荧光图像显示,肌管(来自C2C12细胞)和轴突(来自NG108细胞)与微图案的SiONx支架平行方向高度排列。Si-ions和SiONx生物材料显著增加了GAP43的表达、神经突的生长和排列。这些结果表明,SiONx支架增强了肌肉和神经细胞的粘附和生长,促进了图案表面上排列的肌管和轴突的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface-Patterned Silicon Oxynitride for Aligned Myotubes and Neurite Outgrowth In Vitro.

Traumatic injuries lead to volumetric muscle loss (VML) and nerve damage that cause chronic functional deficits. Due to the inability of mammalian skeletal muscle to regenerate after VML damage, engineered scaffolds have been explored to address this challenge, but with limited success in functional restoration. We introduce novel bioactive amorphous silicon oxynitride (SiONx) biomaterials with surface properties and Si ion release to accelerate muscle and nerve cell differentiation for functional tissue regeneration. Micropatterned scaffolds were designed and developed on Si-wafer to test the effect of SiONx on myogenesis and neurogenesis. The scaffolds were created using UV photolithography to first pattern their surface, followed by the deposition of SiONx through plasma enhanced chemical vapor deposition (PECVD). X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) confirmed the uniform chemical structure of an amorphous SiONx film on the patterned surfaces. Atomic force microscopy and scanning electron microscopy (SEM) elucidated the surface morphology with a uniform 2 μm grating microstructure. The 2 µm pattern size is within the range of cellular dimensions, allowing for effective cell-surface interactions. Further, 2 µm features provide sufficient contact points for cell adhesion without overwhelming the cell's ability to interact with the surface. Two separate studies were conducted with SiONx biomaterials and Si ions alone. This was done to understand how Si ions impact cell response separate from the surfaces. C2C12 mouse myoblasts and NG108 neuronal cells were cultured on SiONx biomaterials. In separate studies, we tested the effect of Si ion treatments with these cells (cultured on tissue culture plastic). Cell culture studies demonstrated enhanced C2C12 myoblast attachment and proliferation on SiONx surfaces. High-resolution SEM and fluorescence images revealed highly aligned myotubes (from C2C12 cells) and axons (from NG108 cells) in a parallel direction to the micropatterned SiONx scaffolds. GAP43 expression, neurite outgrowth, and alignment were significantly increased with the Si-ions and SiONx biomaterials. These findings suggest that SiONx scaffolds enhance muscle and nerve cell adhesion and growth and promote the formation of aligned myotubes and axons on the pattern surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信