与海藻酸盐相比,聚乙烯醇微胶囊化肝球体增强功能。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Stephen Harrington, Edward Larson, Aldyn Wildey, Vincent Ling, Lisa Stehno-Bittel, Francis Karanu
{"title":"与海藻酸盐相比,聚乙烯醇微胶囊化肝球体增强功能。","authors":"Stephen Harrington, Edward Larson, Aldyn Wildey, Vincent Ling, Lisa Stehno-Bittel, Francis Karanu","doi":"10.1089/ten.tea.2024.0312","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background and Aims:</i></b> Cell therapy approaches to treating chronic liver disease provide only transient improvements, mainly due to loss of hepatocytes after infusion. Microencapsulation in alginate has been shown to protect transplanted cells from physical stress and rejection, but the poor biocompatibility of alginate can lead to graft failure. This study aimed to evaluate a biocompatible poly(vinyl alcohol) (PVA)-based microcapsule against standard alginate for improved transplantation outcome of liver spheroids. <b><i>Materials and Methods:</i></b> Human hepatocyte spheroids were microencapsulated in alginate or PVA hydrogel microspheres. Viability and function (albumin secretion and CYP activity) of the encapsulated spheroids were assessed <i>in vitro</i> at 3, 10, and 30 days postencapsulation and compared with unencapsulated spheroids. Spheroids were implanted intraperitoneally into immunodeficient mice, and human albumin levels in serum were monitored over 30 days. Cell-free microspheres were implanted in immune-competent mice to assess material biocompatibility. <b><i>Results:</i></b> Unencapsulated spheroids aggregated extensively beyond 10 days, precluding day 30 assessment. At day 30, PVA spheroids showed significantly higher CYP1A1 induction, albumin secretion, and metabolic activity compared with alginate. Mice receiving PVA spheroids had significantly higher serum albumin after 30 days compared with alginate and unencapsulated spheroids. Empty PVA microspheres showed less evidence of foreign body response <i>in vivo</i>, whereas thicker regions of inflamed tissue were observed in the alginate group. <b><i>Conclusions:</i></b> PVA-encapsulated hepatocyte spheroids maintained better overall viability, metabolic activity, and function compared with alginate-encapsulated cells both <i>in vitro</i> and <i>in vivo</i>. Both encapsulated groups demonstrated substantially improved outcomes compared with unencapsulated cells.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microencapsulation of Liver Spheroids with Poly(Vinyl Alcohol) Enhances Function Compared with Alginate.\",\"authors\":\"Stephen Harrington, Edward Larson, Aldyn Wildey, Vincent Ling, Lisa Stehno-Bittel, Francis Karanu\",\"doi\":\"10.1089/ten.tea.2024.0312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background and Aims:</i></b> Cell therapy approaches to treating chronic liver disease provide only transient improvements, mainly due to loss of hepatocytes after infusion. Microencapsulation in alginate has been shown to protect transplanted cells from physical stress and rejection, but the poor biocompatibility of alginate can lead to graft failure. This study aimed to evaluate a biocompatible poly(vinyl alcohol) (PVA)-based microcapsule against standard alginate for improved transplantation outcome of liver spheroids. <b><i>Materials and Methods:</i></b> Human hepatocyte spheroids were microencapsulated in alginate or PVA hydrogel microspheres. Viability and function (albumin secretion and CYP activity) of the encapsulated spheroids were assessed <i>in vitro</i> at 3, 10, and 30 days postencapsulation and compared with unencapsulated spheroids. Spheroids were implanted intraperitoneally into immunodeficient mice, and human albumin levels in serum were monitored over 30 days. Cell-free microspheres were implanted in immune-competent mice to assess material biocompatibility. <b><i>Results:</i></b> Unencapsulated spheroids aggregated extensively beyond 10 days, precluding day 30 assessment. At day 30, PVA spheroids showed significantly higher CYP1A1 induction, albumin secretion, and metabolic activity compared with alginate. Mice receiving PVA spheroids had significantly higher serum albumin after 30 days compared with alginate and unencapsulated spheroids. Empty PVA microspheres showed less evidence of foreign body response <i>in vivo</i>, whereas thicker regions of inflamed tissue were observed in the alginate group. <b><i>Conclusions:</i></b> PVA-encapsulated hepatocyte spheroids maintained better overall viability, metabolic activity, and function compared with alginate-encapsulated cells both <i>in vitro</i> and <i>in vivo</i>. Both encapsulated groups demonstrated substantially improved outcomes compared with unencapsulated cells.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tea.2024.0312\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0312","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:细胞疗法治疗慢性肝病只提供短暂的改善,主要是由于输注后肝细胞的损失。藻酸盐中的微囊化已被证明可以保护移植细胞免受物理应激和排斥,但藻酸盐的生物相容性差可能导致移植失败。本研究旨在评估一种生物相容性聚乙烯醇(PVA)微胶囊对抗标准海藻酸盐,以改善肝球体移植的结果。材料与方法:用海藻酸盐或聚乙烯醇水凝胶微球对人肝细胞球体进行微囊化。在包封后3、10和30天体外评估包封球体的活力和功能(白蛋白分泌和CYP活性),并与未包封球体进行比较。将球体腹腔植入免疫缺陷小鼠,30天内监测血清中人白蛋白水平。将无细胞微球植入免疫功能小鼠体内,评估材料的生物相容性。结果:未包封的球体广泛聚集超过10天,排除了第30天的评估。在第30天,PVA球体与海藻酸盐相比,CYP1A1诱导、白蛋白分泌和代谢活性显著提高。与海藻酸盐和未包封球体相比,接受PVA球体治疗的小鼠在30天后血清白蛋白水平显著提高。空的PVA微球在体内显示较少的异物反应证据,而在海藻酸盐组中观察到较厚的炎症组织区域。结论:与海藻酸包被的肝细胞相比,pva包被的肝细胞球体在体外和体内均具有更好的总体活力、代谢活性和功能。与未包被的细胞相比,两个包被组的结果都有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microencapsulation of Liver Spheroids with Poly(Vinyl Alcohol) Enhances Function Compared with Alginate.

Background and Aims: Cell therapy approaches to treating chronic liver disease provide only transient improvements, mainly due to loss of hepatocytes after infusion. Microencapsulation in alginate has been shown to protect transplanted cells from physical stress and rejection, but the poor biocompatibility of alginate can lead to graft failure. This study aimed to evaluate a biocompatible poly(vinyl alcohol) (PVA)-based microcapsule against standard alginate for improved transplantation outcome of liver spheroids. Materials and Methods: Human hepatocyte spheroids were microencapsulated in alginate or PVA hydrogel microspheres. Viability and function (albumin secretion and CYP activity) of the encapsulated spheroids were assessed in vitro at 3, 10, and 30 days postencapsulation and compared with unencapsulated spheroids. Spheroids were implanted intraperitoneally into immunodeficient mice, and human albumin levels in serum were monitored over 30 days. Cell-free microspheres were implanted in immune-competent mice to assess material biocompatibility. Results: Unencapsulated spheroids aggregated extensively beyond 10 days, precluding day 30 assessment. At day 30, PVA spheroids showed significantly higher CYP1A1 induction, albumin secretion, and metabolic activity compared with alginate. Mice receiving PVA spheroids had significantly higher serum albumin after 30 days compared with alginate and unencapsulated spheroids. Empty PVA microspheres showed less evidence of foreign body response in vivo, whereas thicker regions of inflamed tissue were observed in the alginate group. Conclusions: PVA-encapsulated hepatocyte spheroids maintained better overall viability, metabolic activity, and function compared with alginate-encapsulated cells both in vitro and in vivo. Both encapsulated groups demonstrated substantially improved outcomes compared with unencapsulated cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信