{"title":"A mini immersed finite element method for two-phase Stokes problems on Cartesian meshes","authors":"Haifeng Ji, Dong Liang, Qian Zhang","doi":"10.1093/imanum/drae053","DOIUrl":"https://doi.org/10.1093/imanum/drae053","url":null,"abstract":"This paper presents a mini immersed finite element (IFE) method for solving two- and three-dimensional two-phase Stokes problems on Cartesian meshes. The IFE space is constructed from the conventional mini element, with shape functions modified on interface elements according to interface jump conditions while keeping the degrees of freedom unchanged. Both discontinuous viscosity coefficients and surface forces are taken into account in the construction. The interface is approximated using discrete level set functions, and explicit formulas for IFE basis functions and correction functions are derived, facilitating ease of implementation.The inf-sup stability and the optimal a priori error estimate of the IFE method, along with the optimal approximation capabilities of the IFE space, are derived rigorously, with constants that are independent of the mesh size and the manner in which the interface intersects the mesh, but may depend on the discontinuous viscosity coefficients. Additionally, it is proved that the condition number has the usual bound independent of the interface. Numerical experiments are provided to confirm the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"82 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julio Careaga, Gabriel N Gatica, Cristian Inzunza, Ricardo Ruiz-Baier
{"title":"New Banach spaces-based mixed finite element methods for the coupled poroelasticity and heat equations","authors":"Julio Careaga, Gabriel N Gatica, Cristian Inzunza, Ricardo Ruiz-Baier","doi":"10.1093/imanum/drae052","DOIUrl":"https://doi.org/10.1093/imanum/drae052","url":null,"abstract":"In this paper, we introduce and analyze a Banach spaces-based approach yielding a fully-mixed finite element method for numerically solving the coupled poroelasticity and heat equations, which describe the interaction between the fields of deformation and temperature. A nonsymmetric pseudostress tensor is utilized to redefine the constitutive equation for the total stress, which is an extension of Hooke’s law to account for thermal effects. The resulting continuous formulation, posed in suitable Banach spaces, consists of a coupled system of three saddle point-type problems, each with right-hand terms that depend on data and the unknowns of the other two. The well-posedness of it is analyzed by means of a fixed-point strategy, so that the classical Banach theorem, along with the Babuška–Brezzi theory in Banach spaces, allows to conclude, under a smallness assumption on the data, the existence of a unique solution. The discrete analysis is conducted in a similar manner, utilizing the Brouwer and Banach theorems to demonstrate both the existence and uniqueness of the discrete solution. The rates of convergence of the resulting Galerkin method are then presented. Finally, a number of numerical tests are shown to validate the aforementioned statement and demonstrate the good performance of the method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"51 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Necessary and sufficient conditions for avoiding Babuška’s paradox on simplicial meshes","authors":"Sören Bartels, Philipp Tscherner","doi":"10.1093/imanum/drae050","DOIUrl":"https://doi.org/10.1093/imanum/drae050","url":null,"abstract":"It is shown that discretizations based on variational or weak formulations of the plate bending problem with simple support boundary conditions do not lead to the failure of convergence when polygonal domain approximations are used and the imposed boundary conditions are compatible with the nodal interpolation of the restriction of certain regular functions to approximating domains. It is further shown that this is optimal in the sense that a full realization of the boundary conditions leads to failure of convergence for conforming methods. The abstract conditions imply that standard nonconforming and discontinuous Galerkin methods converge correctly while conforming methods require a suitable relaxation of the boundary condition. The results are confirmed by numerical experiments.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing Klein-Gordon Spectra","authors":"Frank Rösler, Christiane Tretter","doi":"10.1093/imanum/drae032","DOIUrl":"https://doi.org/10.1093/imanum/drae032","url":null,"abstract":"We study the computational complexity of the eigenvalue problem for the Klein–Gordon equation in the framework of the Solvability Complexity Index Hierarchy. We prove that the eigenvalue of the Klein–Gordon equation with linearly decaying potential can be computed in a single limit with guaranteed error bounds from above. The proof is constructive, i.e. we obtain a numerical algorithm that can be implemented on a computer. Moreover, we prove abstract enclosures for the point spectrum of the Klein–Gordon equation and we compare our numerical results to these enclosures. Finally, we apply both the implemented algorithm and our abstract enclosures to several physically relevant potentials such as Sauter and cusp potentials and we provide a convergence and error analysis.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"98 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dietmar Gallistl, Moritz Hauck, Yizhou Liang, Daniel Peterseim
{"title":"Mixed finite elements for the Gross–Pitaevskii eigenvalue problem: a priori error analysis and guaranteed lower energy bound","authors":"Dietmar Gallistl, Moritz Hauck, Yizhou Liang, Daniel Peterseim","doi":"10.1093/imanum/drae048","DOIUrl":"https://doi.org/10.1093/imanum/drae048","url":null,"abstract":"We establish an a priori error analysis for the lowest-order Raviart–Thomas finite element discretization of the nonlinear Gross-Pitaevskii eigenvalue problem. Optimal convergence rates are obtained for the primal and dual variables as well as for the eigenvalue and energy approximations. In contrast to conforming approaches, which naturally imply upper energy bounds, the proposed mixed discretization provides a guaranteed and asymptotically exact lower bound for the ground state energy. The theoretical results are illustrated by a series of numerical experiments.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"8 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentin Carlier, Martin Campos Pinto, Francesco Fambri
{"title":"Mass, momentum and energy preserving FEEC and broken-FEEC schemes for the incompressible Navier–Stokes equations","authors":"Valentin Carlier, Martin Campos Pinto, Francesco Fambri","doi":"10.1093/imanum/drae047","DOIUrl":"https://doi.org/10.1093/imanum/drae047","url":null,"abstract":"In this article we propose two finite-element schemes for the Navier–Stokes equations, based on a reformulation that involves differential operators from the de Rham sequence and an advection operator with explicit skew-symmetry in weak form. Our first scheme is obtained by discretizing this formulation with conforming FEEC (Finite Element Exterior Calculus) spaces: it preserves the point-wise divergence free constraint of the velocity, its total momentum and its energy, in addition to being pressure robust. Following the broken-FEEC approach, our second scheme uses fully discontinuous spaces and local conforming projections to define the discrete differential operators. It preserves the same invariants up to a dissipation of energy to stabilize numerical discontinuities. For both schemes we use a middle point time discretization that preserve these invariants at the fully discrete level and we analyze its well-posedness in terms of a CFL condition. While our theoretical results hold for general finite elements preserving the de Rham structure, we consider one application to tensor-product spline spaces. Specifically, we conduct several numerical test cases to verify the high order accuracy of the resulting numerical methods, as well as their ability to handle general boundary conditions.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"95 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical method and error estimate for stochastic Landau–Lifshitz–Bloch equation","authors":"Beniamin Goldys, Chunxi Jiao, Kim-Ngan Le","doi":"10.1093/imanum/drae046","DOIUrl":"https://doi.org/10.1093/imanum/drae046","url":null,"abstract":"In this paper we study numerical methods for solving a system of quasilinear stochastic partial differential equations known as the stochastic Landau–Lifshitz–Bloch (LLB) equation on a bounded domain in ${mathbb{R}}^{d}$ for $d=1,2$. Our main results are estimates of the rate of convergence of the Finite Element Method to the solutions of stochastic LLB. To overcome the lack of regularity of the solution in the case $d=2$, we propose a Finite Element scheme for a regularized version of the equation. We then obtain error estimates of numerical solutions and for the solution of the regularized equation as well as the rate of convergence of this solution to the solution of the stochastic LLB equation. As a consequence, the convergence in probability of the approximate solutions to the solution of the stochastic LLB equation is derived. A stronger result is obtained in the case $d=1$ due to a new regularity result for the LLB equation which allows us to avoid regularization.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"191 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the fast convergence of minibatch heavy ball momentum","authors":"Raghu Bollapragada, Tyler Chen, Rachel Ward","doi":"10.1093/imanum/drae033","DOIUrl":"https://doi.org/10.1093/imanum/drae033","url":null,"abstract":"Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size. The algorithm we study can be interpreted as an accelerated randomized Kaczmarz algorithm with minibatching and heavy ball momentum. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical illustrations demonstrating that our bounds are reasonably sharp.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"72 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term accuracy of numerical approximations of SPDEs with the stochastic Navier–Stokes equations as a paradigm","authors":"Nathan E Glatt-Holtz, Cecilia F Mondaini","doi":"10.1093/imanum/drae043","DOIUrl":"https://doi.org/10.1093/imanum/drae043","url":null,"abstract":"This work introduces a general framework for establishing the long time accuracy for approximations of Markovian dynamical systems on separable Banach spaces. Our results illuminate the role that a certain uniformity in Wasserstein contraction rates for the approximating dynamics bears on long time accuracy estimates. In particular, our approach yields weak consistency bounds on ${mathbb{R}}^{+}$ while providing a means to sidestepping a commonly occurring situation where certain higher order moment bounds are unavailable for the approximating dynamics. Additionally, to facilitate the analytical core of our approach, we develop a refinement of certain ‘weak Harris theorems’. This extension expands the scope of applicability of such Wasserstein contraction estimates to a variety of interesting stochastic partial differential equation examples involving weaker dissipation or stronger nonlinearity than would be covered by the existing literature. As a guiding and paradigmatic example, we apply our formalism to the stochastic 2D Navier–Stokes equations and to a semi-implicit in time and spectral Galerkin in space numerical approximation of this system. In the case of a numerical approximation, we establish quantitative estimates on the approximation of invariant measures as well as prove weak consistency on ${mathbb{R}}^{+}$. To develop these numerical analysis results, we provide a refinement of $L^{2}_{x}$ accuracy bounds in comparison to the existing literature, which are results of independent interest.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"64 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The error bounds of Gaussian quadratures for one rational modification of Chebyshev measures","authors":"Rada M Mutavdžić Djukić","doi":"10.1093/imanum/drae039","DOIUrl":"https://doi.org/10.1093/imanum/drae039","url":null,"abstract":"For an analytic integrand, the error term in the Gaussian quadrature can be represented as a contour integral, where the contour is commonly taken to be an ellipse. Thus, finding its upper bound can be reduced to finding the maximum of the modulus of the kernel on the ellipse. The location of this maximum was investigated in many special cases, particularly, for the Gaussian quadrature with respect to the Chebyshev measures modified by a quadratic divisor (known as the Bernstein–Szeg̋ measures). Here, for the Gaussian quadratures with respect to the Chebyshev measures modified by a linear over linear rational factor, we examine the kernel and describe sufficient conditions for the maximum to occur on the real axis. Furthermore, an assessment of the kernel is made in each case, since in some cases the true maximum is hard to reach. Hence, we derive the error bounds for these quadrature formulas. The results are illustrated by the numerical examples. An alternative approach for estimating the error of the Gaussian quadrature with respect to the same measure can be found in [Djukić, D. L., Djukić, R. M. M., Reichel, L. & Spalević, M. M. (2023, Weighted averaged Gaussian quadrature rules for modified Chebyshev measure. Appl. Numer. Math., ISSN 0168-9274)].","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"51 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}