物理信息神经网络误差分析的统一框架

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Marius Zeinhofer, Rami Masri, Kent–André Mardal
{"title":"物理信息神经网络误差分析的统一框架","authors":"Marius Zeinhofer, Rami Masri, Kent–André Mardal","doi":"10.1093/imanum/drae081","DOIUrl":null,"url":null,"abstract":"We prove a priori and a posteriori error estimates for physics-informed neural networks (PINNs) for linear PDEs. We analyze elliptic equations in primal and mixed form, elasticity, parabolic, hyperbolic and Stokes equations, and a PDE constrained optimization problem. For the analysis, we propose an abstract framework in the common language of bilinear forms, and we show that coercivity and continuity lead to error estimates. The obtained estimates are sharp and reveal that the $L^{2}$ penalty approach for initial and boundary conditions in the PINN formulation weakens the norm of the error decay. Finally, utilizing recent advances in PINN optimization, we present numerical examples that illustrate the ability of the method to achieve accurate solutions.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified framework for the error analysis of physics-informed neural networks\",\"authors\":\"Marius Zeinhofer, Rami Masri, Kent–André Mardal\",\"doi\":\"10.1093/imanum/drae081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a priori and a posteriori error estimates for physics-informed neural networks (PINNs) for linear PDEs. We analyze elliptic equations in primal and mixed form, elasticity, parabolic, hyperbolic and Stokes equations, and a PDE constrained optimization problem. For the analysis, we propose an abstract framework in the common language of bilinear forms, and we show that coercivity and continuity lead to error estimates. The obtained estimates are sharp and reveal that the $L^{2}$ penalty approach for initial and boundary conditions in the PINN formulation weakens the norm of the error decay. Finally, utilizing recent advances in PINN optimization, we present numerical examples that illustrate the ability of the method to achieve accurate solutions.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae081\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae081","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了物理信息神经网络(PINN)对线性 PDE 的先验和后验误差估计。我们分析了原始形式和混合形式的椭圆方程、弹性方程、抛物方程、双曲方程和斯托克斯方程,以及一个 PDE 受限优化问题。为了进行分析,我们用双线性形式的通用语言提出了一个抽象框架,并表明矫顽力和连续性可导致误差估计。所获得的估计值非常精确,并揭示了在 PINN 公式中,初始条件和边界条件的 $L^{2}$ 惩罚方法削弱了误差衰减的规范。最后,我们利用 PINN 优化的最新进展,举例说明了该方法实现精确求解的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified framework for the error analysis of physics-informed neural networks
We prove a priori and a posteriori error estimates for physics-informed neural networks (PINNs) for linear PDEs. We analyze elliptic equations in primal and mixed form, elasticity, parabolic, hyperbolic and Stokes equations, and a PDE constrained optimization problem. For the analysis, we propose an abstract framework in the common language of bilinear forms, and we show that coercivity and continuity lead to error estimates. The obtained estimates are sharp and reveal that the $L^{2}$ penalty approach for initial and boundary conditions in the PINN formulation weakens the norm of the error decay. Finally, utilizing recent advances in PINN optimization, we present numerical examples that illustrate the ability of the method to achieve accurate solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信