{"title":"Asymptotic consistency of the WSINDy algorithm in the limit of continuum data","authors":"Daniel A Messenger, David M Bortz","doi":"10.1093/imanum/drae086","DOIUrl":null,"url":null,"abstract":"In this work we study the asymptotic consistency of the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) in the identification of differential equations from noisy samples of solutions. We prove that the WSINDy estimator is unconditionally asymptotically consistent for a wide class of models that includes the Navier–Stokes, Kuramoto–Sivashinsky and Sine–Gordon equations. We thus provide a mathematically rigorous explanation for the observed robustness to noise of weak-form equation learning. Conversely, we also show that, in general, the WSINDy estimator is only conditionally asymptotically consistent, yielding discovery of spurious terms with probability one if the noise level exceeds a critical threshold $\\sigma _{c}$. We provide explicit bounds on $\\sigma _{c}$ in the case of Gaussian white noise and we explicitly characterize the spurious terms that arise in the case of trigonometric and/or polynomial libraries. Furthermore, we show that, if the data is suitably denoised (a simple moving average filter is sufficient), then asymptotic consistency is recovered for models with locally-Lipschitz, polynomial-growth nonlinearities. Our results reveal important aspects of weak-form equation learning, which may be used to improve future algorithms. We demonstrate our findings numerically using the Lorenz system, the cubic oscillator, a viscous Burgers-growth model and a Kuramoto–Sivashinsky-type high-order PDE.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"63 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we study the asymptotic consistency of the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) in the identification of differential equations from noisy samples of solutions. We prove that the WSINDy estimator is unconditionally asymptotically consistent for a wide class of models that includes the Navier–Stokes, Kuramoto–Sivashinsky and Sine–Gordon equations. We thus provide a mathematically rigorous explanation for the observed robustness to noise of weak-form equation learning. Conversely, we also show that, in general, the WSINDy estimator is only conditionally asymptotically consistent, yielding discovery of spurious terms with probability one if the noise level exceeds a critical threshold $\sigma _{c}$. We provide explicit bounds on $\sigma _{c}$ in the case of Gaussian white noise and we explicitly characterize the spurious terms that arise in the case of trigonometric and/or polynomial libraries. Furthermore, we show that, if the data is suitably denoised (a simple moving average filter is sufficient), then asymptotic consistency is recovered for models with locally-Lipschitz, polynomial-growth nonlinearities. Our results reveal important aspects of weak-form equation learning, which may be used to improve future algorithms. We demonstrate our findings numerically using the Lorenz system, the cubic oscillator, a viscous Burgers-growth model and a Kuramoto–Sivashinsky-type high-order PDE.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.