IMA Journal of Numerical Analysis最新文献

筛选
英文 中文
Variational data assimilation with finite-element discretization for second-order parabolic interface equation 二阶抛物面界面方程的有限元离散化变量数据同化
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-05-11 DOI: 10.1093/imanum/drae010
Xuejian Li, Xiaoming He, Wei Gong, Craig C Douglas
{"title":"Variational data assimilation with finite-element discretization for second-order parabolic interface equation","authors":"Xuejian Li, Xiaoming He, Wei Gong, Craig C Douglas","doi":"10.1093/imanum/drae010","DOIUrl":"https://doi.org/10.1093/imanum/drae010","url":null,"abstract":"In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis for local discontinuous Galerkin semidiscretization of Richards’ equation 理查兹方程局部不连续伽勒金半离散化的误差分析
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-05-11 DOI: 10.1093/imanum/drae013
Scott Congreve, Vít Dolejší, Sunčica Sakić
{"title":"Error analysis for local discontinuous Galerkin semidiscretization of Richards’ equation","authors":"Scott Congreve, Vít Dolejší, Sunčica Sakić","doi":"10.1093/imanum/drae013","DOIUrl":"https://doi.org/10.1093/imanum/drae013","url":null,"abstract":"This paper concerns an error analysis of the space semidiscrete scheme for the Richards’ equation modeling flows in variably saturated porous media. This nonlinear parabolic partial differential equation can degenerate; namely, we consider the case where the time derivative term can vanish, i.e., the fast-diffusion type of degeneracy. We discretize the Richards’ equation by the local discontinuous Galerkin method, which provides high order accuracy and preserves stability. Due to the nonlinearity of the problem, special techniques for numerical analysis of the scheme are required. In particular, we combine two partial error bounds using continuous mathematical induction and derive a priori error estimates with respect to the spatial discretization parameter and the Hölder coefficient of the nonlinear temporal derivative. Finally, the theoretical results are supported by numerical experiments, including cases beyond the assumptions of the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A linearly implicit finite element full-discretization scheme for SPDEs with nonglobally Lipschitz coefficients 非全局 Lipschitz 系数 SPDE 的线性隐式有限元全离散化方案
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-05-08 DOI: 10.1093/imanum/drae012
Mengchao Wang, Xiaojie Wang
{"title":"A linearly implicit finite element full-discretization scheme for SPDEs with nonglobally Lipschitz coefficients","authors":"Mengchao Wang, Xiaojie Wang","doi":"10.1093/imanum/drae012","DOIUrl":"https://doi.org/10.1093/imanum/drae012","url":null,"abstract":"The present article deals with strong approximations of additive noise driven stochastic partial differential equations (SPDEs) with nonglobally Lipschitz nonlinearity in a bounded domain $ mathcal{D} in{mathbb{R}}^{d}$, $ d leq 3$. As the first contribution, we establish the well-posedness and regularity of the considered SPDEs in space dimension $d le 3$, under more relaxed assumptions on the stochastic convolution. This improves relevant results in the literature and covers both the space-time white noise ($d=1$) and the trace-class noises ($text{Tr} (Q) < infty $) in multiple dimensions $d=2,3$. Such an improvement is achieved based on a key perturbation estimate for a perturbed PDE, with the aid of which we prove the convergence and uniform regularity of a spectral approximation of the SPDEs and thus get the improved regularity results. The second contribution of the paper is to propose and analyze a spatio-temporal discretization of the SPDEs, by incorporating a standard finite element method in space and a linearly implicit nonlinearity-tamed Euler method for the temporal discretization. The proposed time-stepping scheme is linearly implicit and does not suffer from solving nonlinear algebra equations as the backward Euler scheme does. Based on the improved regularity results, we recover the expected strong convergence rates of the fully discrete scheme and reveal how the convergence rates rely on the regularity of the noise process. In particular, a classical convergence rate of order $O(h^{2} +tau )$ can be obtained even in high dimension $d=3$, as the driven noise is of trace class and satisfies certain regularity assumptions. The optimal error estimates turn out to be challenging and face some essential difficulties when the tamed time-stepping scheme meets the finite element spatial discretization, particularly in the context of low regularity and multiple dimensions $d le 3$. Some highly nontrivial arguments are introduced to overcome the difficulties. Finally, numerical examples corroborate the claimed strong orders of convergence.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of convergence rates: kernel interpolation on non-Lipschitz domains 收敛率的稳定性:非 Lipschitz 域上的核插值法
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-05-08 DOI: 10.1093/imanum/drae014
Tizian Wenzel, Gabriele Santin, Bernard Haasdonk
{"title":"Stability of convergence rates: kernel interpolation on non-Lipschitz domains","authors":"Tizian Wenzel, Gabriele Santin, Bernard Haasdonk","doi":"10.1093/imanum/drae014","DOIUrl":"https://doi.org/10.1093/imanum/drae014","url":null,"abstract":"Error estimates for kernel interpolation in Reproducing Kernel Hilbert Spaces usually assume quite restrictive properties on the shape of the domain, especially in the case of infinitely smooth kernels like the popular Gaussian kernel. In this paper we prove that it is possible to obtain convergence results (in the number of interpolation points) for kernel interpolation for arbitrary domains $varOmega subset{mathbb{R}} ^{d}$, thus allowing for non-Lipschitz domains including e.g., cusps and irregular boundaries. Especially we show that, when going to a smaller domain $tilde{varOmega } subset varOmega subset{mathbb{R}} ^{d}$, the convergence rate does not deteriorate—i.e., the convergence rates are stable with respect to going to a subset. We obtain this by leveraging an analysis of greedy kernel algorithms. The impact of this result is explained on the examples of kernels of finite as well as infinite smoothness. A comparison to approximation in Sobolev spaces is drawn, where the shape of the domain $varOmega $ has an impact on the approximation properties. Numerical experiments illustrate and confirm the analysis.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong convergence of adaptive time-stepping schemes for the stochastic Allen–Cahn equation 随机艾伦-卡恩方程的自适应时间步进方案的强收敛性
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-05-05 DOI: 10.1093/imanum/drae009
Chuchu Chen, Tonghe Dang, Jialin Hong
{"title":"Strong convergence of adaptive time-stepping schemes for the stochastic Allen–Cahn equation","authors":"Chuchu Chen, Tonghe Dang, Jialin Hong","doi":"10.1093/imanum/drae009","DOIUrl":"https://doi.org/10.1093/imanum/drae009","url":null,"abstract":"It is known from Beccari et al. (2019) that the standard explicit Euler-type scheme (such as the exponential Euler and the linear-implicit Euler schemes) with a uniform timestep, though computationally efficient, may diverge for the stochastic Allen–Cahn equation. To overcome the divergence, this paper proposes and analyzes adaptive time-stepping schemes, which adapt the timestep at each iteration to control numerical solutions from instability. The a priori estimates in $mathscr{C}(mathscr{O})$-norm and $dot{H}^{beta }(mathscr{O})$-norm of numerical solutions are established provided the adaptive timestep function is suitably bounded, which plays a key role in the convergence analysis. We show that the adaptive time-stepping schemes converge strongly with order $frac{beta }{2}$ in time and $frac{beta }{d}$ in space with $d$ ($d=1,2,3$) being the dimension and $beta in (0,2]$. Numerical experiments show that the adaptive time-stepping schemes are simple to implement and at a lower computational cost than a scheme with the uniform timestep.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A certified wavelet-based physics-informed neural network for the solution of parameterized partial differential equations 基于认证小波的物理信息神经网络,用于求解参数化偏微分方程
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-05-05 DOI: 10.1093/imanum/drae011
Lewin Ernst, Karsten Urban
{"title":"A certified wavelet-based physics-informed neural network for the solution of parameterized partial differential equations","authors":"Lewin Ernst, Karsten Urban","doi":"10.1093/imanum/drae011","DOIUrl":"https://doi.org/10.1093/imanum/drae011","url":null,"abstract":"Physics Informed Neural Networks (PINNs) have frequently been used for the numerical approximation of Partial Differential Equations (PDEs). The goal of this paper is to construct PINNs along with a computable upper bound of the error, which is particularly relevant for model reduction of Parameterized PDEs (PPDEs). To this end, we suggest to use a weighted sum of expansion coefficients of the residual in terms of an adaptive wavelet expansion both for the loss function and an error bound. This approach is shown here for elliptic PPDEs using both the standard variational and an optimally stable ultra-weak formulation. Numerical examples show a very good quantitative effectivity of the wavelet-based error bound.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element methods for multicomponent convection-diffusion 多成分对流扩散有限元方法
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-04-28 DOI: 10.1093/imanum/drae001
Francis R A Aznaran, Patrick E Farrell, Charles W Monroe, Alexander J Van-Brunt
{"title":"Finite element methods for multicomponent convection-diffusion","authors":"Francis R A Aznaran, Patrick E Farrell, Charles W Monroe, Alexander J Van-Brunt","doi":"10.1093/imanum/drae001","DOIUrl":"https://doi.org/10.1093/imanum/drae001","url":null,"abstract":"We develop finite element methods for coupling the steady-state Onsager–Stefan–Maxwell (OSM) equations to compressible Stokes flow. These equations describe multicomponent flow at low Reynolds number, where a mixture of different chemical species within a common thermodynamic phase is transported by convection and molecular diffusion. Developing a variational formulation for discretizing these equations is challenging: the formulation must balance physical relevance of the variables and boundary data, regularity assumptions, tractability of the analysis, enforcement of thermodynamic constraints, ease of discretization and extensibility to the transient, anisothermal and nonideal settings. To resolve these competing goals, we employ two augmentations: the first enforces the definition of mass-average velocity in the OSM equations, while its dual modifies the Stokes momentum equation to enforce symmetry. Remarkably, with these augmentations we achieve a Picard linearization of symmetric saddle point type, despite the equations not possessing a Lagrangian structure. Exploiting structure mandated by linear irreversible thermodynamics, we prove the inf-sup condition for this linearization, and identify finite element function spaces that automatically inherit well-posedness. We verify our error estimates with a numerical example, and illustrate the application of the method to nonideal fluids with a simulation of the microfluidic mixing of hydrocarbons.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An explicit spectral Fletcher–Reeves conjugate gradient method for bi-criteria optimization 用于双标准优化的显式光谱弗莱彻-里维斯共轭梯度法
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-04-12 DOI: 10.1093/imanum/drae003
Y Elboulqe, M El Maghri
{"title":"An explicit spectral Fletcher–Reeves conjugate gradient method for bi-criteria optimization","authors":"Y Elboulqe, M El Maghri","doi":"10.1093/imanum/drae003","DOIUrl":"https://doi.org/10.1093/imanum/drae003","url":null,"abstract":"In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the rate of convergence of Yosida approximation for the nonlocal Cahn–Hilliard equation 论非局部卡恩-希利亚德方程的约西达近似的收敛速率
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-04-10 DOI: 10.1093/imanum/drae006
Piotr Gwiazda, Jakub Skrzeczkowski, Lara Trussardi
{"title":"On the rate of convergence of Yosida approximation for the nonlocal Cahn–Hilliard equation","authors":"Piotr Gwiazda, Jakub Skrzeczkowski, Lara Trussardi","doi":"10.1093/imanum/drae006","DOIUrl":"https://doi.org/10.1093/imanum/drae006","url":null,"abstract":"It is well-known that one can construct solutions to the nonlocal Cahn–Hilliard equation with singular potentials via Yosida approximation with parameter $lambda to 0$. The usual method is based on compactness arguments and does not provide any rate of convergence. Here, we fill the gap and we obtain an explicit convergence rate $sqrt{lambda }$. The proof is based on the theory of maximal monotone operators and an observation that the nonlocal operator is of Hilbert–Schmidt type. Our estimate can provide convergence result for the Galerkin methods where the parameter $lambda $ could be linked to the discretization parameters, yielding appropriate error estimates.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: An asymptotic-preserving discretization scheme for gas transport in pipe networks 更正:管网中气体输送的渐进保全离散化方案
IF 2.1 2区 数学
IMA Journal of Numerical Analysis Pub Date : 2024-04-08 DOI: 10.1093/imanum/drae029
H. Egger, J. Giesselmann, T. Kunkel, N. Philippi
{"title":"Correction to: An asymptotic-preserving discretization scheme for gas transport in pipe networks","authors":"H. Egger, J. Giesselmann, T. Kunkel, N. Philippi","doi":"10.1093/imanum/drae029","DOIUrl":"https://doi.org/10.1093/imanum/drae029","url":null,"abstract":"","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140731174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信