IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Lise-Marie Imbert-Gérard, Andrea Moiola, Chiara Perinati, Paul Stocker
{"title":"Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems","authors":"Lise-Marie Imbert-Gérard, Andrea Moiola, Chiara Perinati, Paul Stocker","doi":"10.1093/imanum/drae094","DOIUrl":null,"url":null,"abstract":"Trefftz schemes are high-order Galerkin methods whose discrete spaces are made of elementwise exact solutions of the underlying partial differential equation (PDE). Trefftz basis functions can be easily computed for many PDEs that are linear, homogeneous and have piecewise-constant coefficients. However, if the equation has variable coefficients, exact solutions are generally unavailable. Quasi-Trefftz methods overcome this limitation relying on elementwise ‘approximate solutions’ of the PDE, in the sense of Taylor polynomials. We define polynomial quasi-Trefftz spaces for general linear PDEs with smooth coefficients and source term, describe their approximation properties and, under a nondegeneracy condition, provide a simple algorithm to compute a basis. We then focus on a quasi-Trefftz DG method for variable-coefficient elliptic diffusion–advection–reaction problems, showing stability and high-order convergence of the scheme. The main advantage over standard DG schemes is the higher accuracy for comparable numbers of degrees of freedom. For nonhomogeneous problems with piecewise-smooth source term we propose to construct a local quasi-Trefftz particular solution and then solve for the difference. Numerical experiments in two and three space dimensions show the excellent properties of the method both in diffusion-dominated and advection-dominated problems.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"5 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae094","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Trefftz 方案是一种高阶 Galerkin 方法,其离散空间由基础偏微分方程 (PDE) 的元素精确解构成。对于许多线性、均质且系数片断恒定的偏微分方程,可以轻松计算出 Trefftz 基函数。但是,如果方程具有可变系数,则通常无法获得精确解。准 Trefftz 方法依靠 PDE 的元素 "近似解"(即泰勒多项式)克服了这一限制。我们定义了具有光滑系数和源项的一般线性 PDE 的多项式准特雷弗茨空间,描述了它们的近似特性,并在非退化条件下提供了计算基础的简单算法。然后,我们重点研究了针对可变系数椭圆扩散-对流-反应问题的准特勒夫茨 DG 方法,展示了该方案的稳定性和高阶收敛性。与标准 DG 方案相比,该方法的主要优点是在自由度数量相当的情况下精度更高。对于具有片滑源项的非均质问题,我们建议构建一个局部准特雷弗茨特定解,然后求解差分。二维和三维空间的数值实验表明,该方法在扩散主导型和平流主导型问题中都具有出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems
Trefftz schemes are high-order Galerkin methods whose discrete spaces are made of elementwise exact solutions of the underlying partial differential equation (PDE). Trefftz basis functions can be easily computed for many PDEs that are linear, homogeneous and have piecewise-constant coefficients. However, if the equation has variable coefficients, exact solutions are generally unavailable. Quasi-Trefftz methods overcome this limitation relying on elementwise ‘approximate solutions’ of the PDE, in the sense of Taylor polynomials. We define polynomial quasi-Trefftz spaces for general linear PDEs with smooth coefficients and source term, describe their approximation properties and, under a nondegeneracy condition, provide a simple algorithm to compute a basis. We then focus on a quasi-Trefftz DG method for variable-coefficient elliptic diffusion–advection–reaction problems, showing stability and high-order convergence of the scheme. The main advantage over standard DG schemes is the higher accuracy for comparable numbers of degrees of freedom. For nonhomogeneous problems with piecewise-smooth source term we propose to construct a local quasi-Trefftz particular solution and then solve for the difference. Numerical experiments in two and three space dimensions show the excellent properties of the method both in diffusion-dominated and advection-dominated problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信