A spectral collocation method for functional and delay differential equations

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Nicholas Hale
{"title":"A spectral collocation method for functional and delay differential equations","authors":"Nicholas Hale","doi":"10.1093/imanum/drae079","DOIUrl":null,"url":null,"abstract":"A framework for Chebyshev spectral collocation methods for the numerical solution of functional and delay differential equations (FDEs and DDEs) is described. The framework combines interpolation via the barycentric resampling matrix with a multidomain approach used to resolve isolated discontinuities propagated by nonsmooth initial data. Geometric convergence in the number of degrees of freedom is demonstrated for several examples of linear and nonlinear FDEs and DDEs with various delay types, including discrete, proportional, continuous and state-dependent delay. The framework is a natural extension of standard spectral collocation methods and can be readily incorporated into existing spectral discretizations, such as in Chebfun/Chebop, allowing the automated and efficient solution of a wide class of nonlinear FDEs and DDEs.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A framework for Chebyshev spectral collocation methods for the numerical solution of functional and delay differential equations (FDEs and DDEs) is described. The framework combines interpolation via the barycentric resampling matrix with a multidomain approach used to resolve isolated discontinuities propagated by nonsmooth initial data. Geometric convergence in the number of degrees of freedom is demonstrated for several examples of linear and nonlinear FDEs and DDEs with various delay types, including discrete, proportional, continuous and state-dependent delay. The framework is a natural extension of standard spectral collocation methods and can be readily incorporated into existing spectral discretizations, such as in Chebfun/Chebop, allowing the automated and efficient solution of a wide class of nonlinear FDEs and DDEs.
泛函与时滞微分方程的谱配置方法
描述了一种切比雪夫谱配点法的框架,用于泛函微分方程和时滞微分方程的数值解。该框架结合了通过重心重采样矩阵的插值和用于解决由非光滑初始数据传播的孤立不连续的多域方法。对具有离散、比例、连续和状态相关延迟的线性和非线性fde和dde的几个例子,证明了自由度数目的几何收敛性。该框架是标准光谱配置方法的自然扩展,可以很容易地整合到现有的光谱离散化中,例如在Chebfun/Chebop中,允许自动化和高效地解决各种非线性fde和dde。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信