Error analysis for a finite element approximation of the steady p·-Navier–Stokes equations

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Luigi C Berselli, Alex Kaltenbach
{"title":"Error analysis for a finite element approximation of the steady p·-Navier–Stokes equations","authors":"Luigi C Berselli, Alex Kaltenbach","doi":"10.1093/imanum/drae082","DOIUrl":null,"url":null,"abstract":"In this paper, we examine a finite element approximation of the steady $p(\\cdot )$-Navier–Stokes equations ($p(\\cdot )$ is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index $p(\\cdot )$. Numerical experiments confirm the quasi-optimality of the a priori error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"16 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we examine a finite element approximation of the steady $p(\cdot )$-Navier–Stokes equations ($p(\cdot )$ is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index $p(\cdot )$. Numerical experiments confirm the quasi-optimality of the a priori error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.
纳维尔-斯托克斯稳定方程的有限元近似误差分析
本文研究了稳定的 $p(\cdot )$ 纳维尔-斯托克斯方程($p(\cdot )$ 与变量有关)的有限元近似,并通过对速度矢量场和运动压力的自然分数正则假设证明了收敛阶数。与之前的结果相比,我们处理了对流项,并采用了更实用的幂律指数 $p(\cdot )$离散化方法。数值实验证实,关于速度矢量场和运动压力的分数正则假设,(速度)先验误差估计准最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信