针对 Nemytski 型 SPDE 的阶次高达 1.5 的指数随机 Runge-Kutta 类型方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler
{"title":"针对 Nemytski 型 SPDE 的阶次高达 1.5 的指数随机 Runge-Kutta 类型方法","authors":"Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler","doi":"10.1093/imanum/drae064","DOIUrl":null,"url":null,"abstract":"For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type\",\"authors\":\"Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler\",\"doi\":\"10.1093/imanum/drae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\\\\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae064\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于随机偏微分方程解的近似,既能获得高阶收敛,同时又有合理计算成本的数值方法尤为重要。因此,我们提出了一种指数随机 Runge-Kutta 类型的新数值方法,该方法的时间阶收敛可达 $\frac{3}/{2}$,并可与多种空间离散方法相结合。所开发的无导数方案系列适用于 Nemytski 型随机偏微分方程,即具有点乘噪声算子的随机偏微分方程。我们证明了这些方案在均方根意义上的强收敛性,并给出了一些揭示理论结果的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type
For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信