{"title":"Global well-posedness for 2D Navier–Stokes equations with horizontal dissipation in only one component","authors":"Xiaochuan Guo, Hongxia Lin, Ruiqi You, Wenjie Yao","doi":"10.1016/j.aml.2025.109719","DOIUrl":"10.1016/j.aml.2025.109719","url":null,"abstract":"<div><div>This paper concerns a special anisotropic Navier–Stokes equations on periodic boxes. The system only has horizontal dissipation in the horizontal component equation. Based on special properties of the periodic domain and decomposition techniques, we prove the global well-posedness and stability of the symmetric solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Furthermore, exponential decay rates are obtained for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the oscillation <span><math><msubsup><mrow><mover><mrow><mi>u</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup></math></span> in horizontal periodic. Our work extends the stability result in Dong et al. (2021) to weaker dissipation.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109719"},"PeriodicalIF":2.8,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144858459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvements of boundedness criteria for a class of indirect chemotaxis-consumption models with signal-dependent sensitivity","authors":"Khadijeh Baghaei , Yutaro Chiyo , Chihaya Machino , Tomomi Yokota","doi":"10.1016/j.aml.2025.109718","DOIUrl":"10.1016/j.aml.2025.109718","url":null,"abstract":"<div><div>This paper deals with an indirect chemotaxis-consumption model with signal-dependent sensitivity. In previous studies, the boundedness of solutions to this system was obtained with the restrictions on the dimension <span><math><mi>n</mi></math></span> and the diffusion coefficient <span><math><mi>ξ</mi></math></span>. The purpose of the present paper is to remove these restrictions on both <span><math><mi>n</mi></math></span> and <span><math><mi>ξ</mi></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109718"},"PeriodicalIF":2.8,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sine transform-based preconditioner for the fourth-order scheme arising from multi-dimensional nonlocal Poisson equations","authors":"Wei Qu , Yuan-Yuan Huang , Lot-Kei Chou , Siu-Long Lei","doi":"10.1016/j.aml.2025.109717","DOIUrl":"10.1016/j.aml.2025.109717","url":null,"abstract":"<div><div>In this paper, a simple and easy-to-implement fourth-order fractional central difference (4FCD) method is used to discretize the multi-dimensional nonlocal Poisson equation involving the integral fractional Laplacian (IFL), which gives a multilevel symmetric and positive definite Toeplitz linear system. To efficiently solve the system, we propose a sine transform-based preconditioner and prove that the preconditioned conjugate gradient (PCG) method can achieve a convergence rate independent of mesh-size. Finally, numerical results are presented to demonstrate the effectiveness of the proposed preconditioner compared with state-of-the-art methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109717"},"PeriodicalIF":2.8,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of a community transmission model with HIV detection","authors":"Fengying Wei , Jiaxin Liu , Zhen Jin","doi":"10.1016/j.aml.2025.109715","DOIUrl":"10.1016/j.aml.2025.109715","url":null,"abstract":"<div><div>The prompt and massive detection of the community population with HIV is beneficial to the early diagnosis and helps to determine the main tendency of HIV/AIDS transmission from the perspective of public health and policy makers. In this study, an SIDMA (Susceptible–Infected–Diagnosed–Monitored–AIDS) compartmental model with HIV detection is proposed by using Holling type II functional response. The slow average handling time in HIV detection is taken into account. We first derive the basic reproduction number of the SIDMA model using the next generation matrix method. Then, the global stabilities for disease-free equilibrium point, and boundary equilibrium point are proved under moderate conditions. The research results show that the threshold of global stabilities increases with the monitoring rate. Alternatively, given that the average handling time of HIV detection is fast enough, the research results explore that the underestimation for the threshold of the global stabilities usually exists. This study reveals that positive medical interventions for the community population with HIV improve the life quality through the enhancement of the monitoring rate, also finds that prevalence situation of the community population with HIV is under control.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109715"},"PeriodicalIF":2.8,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144852271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A remark on the existence of specific nonoscillatory solutions of half-linear ordinary differential equations","authors":"Manabu Naito , Hiroyuki Usami","doi":"10.1016/j.aml.2025.109714","DOIUrl":"10.1016/j.aml.2025.109714","url":null,"abstract":"<div><div>The half-linear ordinary differential equation <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>sgn</mi><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>sgn</mi><mspace></mspace><mi>u</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>is considered. Here, <span><math><mi>α</mi></math></span> and <span><math><mi>λ</mi></math></span> are positive constants, and <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a real-valued continuous function on <span><math><mrow><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span> and does not change sign for sufficiently large <span><math><mi>t</mi></math></span>. It is shown that, under the assumption <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, if the above equation has a solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> which behaves like <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math></span> or <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, then <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is absolutely integrable on <span><math><mrow><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109714"},"PeriodicalIF":2.8,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Willem Diepeveen , Jon Schwenk , Andrea L. Bertozzi
{"title":"Latent Diffeomorphic Dynamic Mode Decomposition","authors":"Willem Diepeveen , Jon Schwenk , Andrea L. Bertozzi","doi":"10.1016/j.aml.2025.109701","DOIUrl":"10.1016/j.aml.2025.109701","url":null,"abstract":"<div><div>We present Latent Diffeomorphic Dynamic Mode Decomposition (LDDMD), a new data reduction approach for the analysis of non-linear systems that combines the interpretability of Dynamic Mode Decomposition (DMD) with the predictive power of Recurrent Neural Networks (RNNs). Notably, LDDMD maintains simplicity, which enhances interpretability, while effectively modeling and learning complex non-linear systems with memory, enabling accurate predictions. This is exemplified by its successful application in streamflow prediction.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109701"},"PeriodicalIF":2.8,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144780794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On (p,n)-Laplace Schrödinger equations with Stein-Weiss convolution parts in Rn","authors":"Deepak Kumar Mahanta , Patrick Winkert","doi":"10.1016/j.aml.2025.109700","DOIUrl":"10.1016/j.aml.2025.109700","url":null,"abstract":"<div><div>By using the mountain pass theorem, this article deals with the existence of positive ground state solutions to a class of <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></math></span>-Laplace Schrödinger equations with Stein-Weiss reaction under critical exponential growth in the sense of the Moser–Trudinger inequality in the whole <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109700"},"PeriodicalIF":2.8,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144750706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liouville-type theorems for the stationary ideal compressible MHD equations","authors":"Youseung Cho , Hyunjin In , Minsuk Yang","doi":"10.1016/j.aml.2025.109694","DOIUrl":"10.1016/j.aml.2025.109694","url":null,"abstract":"<div><div>We study Liouville-type theorems for the stationary ideal compressible magnetohydrodynamics (MHD) equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. In particular, we improve the theorems of Cai et al. (2024) (specifically Theorems 1.1 and 1.2). We remove symmetry assumptions such as axial symmetry without swirl and establish Liouville-type theorems under significantly weaker integrability conditions. We derive mean value identities and corresponding monotonicity properties to prove that smooth solutions satisfying a vanishing energy-type condition at infinity must be trivial. The results extend to lower-dimensional reduced models derived from the MHD system.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109694"},"PeriodicalIF":2.8,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schrödinger–Poisson systems with the double critical growth on the first Heisenberg group","authors":"Sihua Liang , Patrizia Pucci , Xueqi Sun","doi":"10.1016/j.aml.2025.109696","DOIUrl":"10.1016/j.aml.2025.109696","url":null,"abstract":"<div><div>This paper is mainly focused on a class of Schrödinger–Poisson systems with the double critical growth on the first Heisenberg group. By variational methods, together with the concentration–compactness principle on the Heisenberg group and a critical point theorem, existence of multiple solutions for this problem is proved. In a way, our results complement and extend previous theorems of Liang et al. [9], An and Liu [4], Guo and Shi [8].</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109696"},"PeriodicalIF":2.8,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144750536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The spreading phenomenon of solutions for reaction–diffusion equations with fractional Laplacian","authors":"Luyi Ma , Hong-Tao Niu , Zhi-Cheng Wang","doi":"10.1016/j.aml.2025.109698","DOIUrl":"10.1016/j.aml.2025.109698","url":null,"abstract":"<div><div>This paper is concerned with the Cauchy problem for the reaction–diffusion equations with fractional Laplacian. We showed that when the initial value is compactly supported and the support width is large enough, the solution for the reaction–diffusion equations with fractional Laplacian will spread to 1. In addition, the speed <span><math><mi>c</mi></math></span> of planar traveling wave front is also the spreading speed.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109698"},"PeriodicalIF":2.8,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144720897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}