具有恐惧效应和状态切换的随机捕食者-猎物模型的阈值行为

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jing Ge, Weiming Ji, Meng Liu
{"title":"具有恐惧效应和状态切换的随机捕食者-猎物模型的阈值行为","authors":"Jing Ge,&nbsp;Weiming Ji,&nbsp;Meng Liu","doi":"10.1016/j.aml.2025.109476","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a stochastic predator–prey model with fear effect and regime-switching. It is testified that the dynamical behaviors of the model are determined by two thresholds <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>G</mi></math></span>: if both <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>G</mi></math></span> are positive, then the model admits a unique stationary distribution with the ergodic property; if <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is positive and <span><math><mi>G</mi></math></span> is negative, then the predator population dies out and the prey population is persistent; if <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is negative, then both the prey population and the predator population die out. Some recent results are improved and extended greatly.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"164 ","pages":"Article 109476"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold behavior of a stochastic predator–prey model with fear effect and regime-switching\",\"authors\":\"Jing Ge,&nbsp;Weiming Ji,&nbsp;Meng Liu\",\"doi\":\"10.1016/j.aml.2025.109476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a stochastic predator–prey model with fear effect and regime-switching. It is testified that the dynamical behaviors of the model are determined by two thresholds <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>G</mi></math></span>: if both <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>G</mi></math></span> are positive, then the model admits a unique stationary distribution with the ergodic property; if <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is positive and <span><math><mi>G</mi></math></span> is negative, then the predator population dies out and the prey population is persistent; if <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is negative, then both the prey population and the predator population die out. Some recent results are improved and extended greatly.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"164 \",\"pages\":\"Article 109476\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000230\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个具有恐惧效应和状态切换的随机捕食者-猎物模型。证明了模型的动力学行为是由两个阈值F1和G决定的:如果F1和G都是正的,则模型具有唯一的平稳分布,且具有遍历性;如果F1为正,G为负,则捕食者种群灭绝,而猎物种群持续存在;如果F1是负的,那么猎物种群和捕食者种群都灭绝了。最近的一些结果得到了改进和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold behavior of a stochastic predator–prey model with fear effect and regime-switching
This work proposes a stochastic predator–prey model with fear effect and regime-switching. It is testified that the dynamical behaviors of the model are determined by two thresholds F1 and G: if both F1 and G are positive, then the model admits a unique stationary distribution with the ergodic property; if F1 is positive and G is negative, then the predator population dies out and the prey population is persistent; if F1 is negative, then both the prey population and the predator population die out. Some recent results are improved and extended greatly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信