Applied Mathematics Letters最新文献

筛选
英文 中文
Global well-posedness of the Maxwell–Landau–Lifshitz equation with spin accumulation 具有自旋积累的Maxwell-Landau-Lifshitz方程的全局适定性
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-26 DOI: 10.1016/j.aml.2025.109617
Xiuli Xu , Xueke Pu
{"title":"Global well-posedness of the Maxwell–Landau–Lifshitz equation with spin accumulation","authors":"Xiuli Xu ,&nbsp;Xueke Pu","doi":"10.1016/j.aml.2025.109617","DOIUrl":"10.1016/j.aml.2025.109617","url":null,"abstract":"<div><div>The Maxwell–Landau–Lifshitz equation with spin accumulation is studied in the paper. We prove the existence and uniqueness of global solutions using energy estimates method in two-dimensional space.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"170 ","pages":"Article 109617"},"PeriodicalIF":2.9,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144147121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhomogeneity, magnetic auto-Bäcklund transformations and magnetic solitons for a generalized variable-coefficient Kraenkel-Manna-Merle system in a deformed ferrite 变形铁氧体中广义变系数Kraenkel-Manna-Merle体系的不均匀性、磁auto-Bäcklund变换和磁孤子
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-22 DOI: 10.1016/j.aml.2025.109615
Xin-Yi Gao , Jian-Guo Liu , Gang-Wei Wang
{"title":"Inhomogeneity, magnetic auto-Bäcklund transformations and magnetic solitons for a generalized variable-coefficient Kraenkel-Manna-Merle system in a deformed ferrite","authors":"Xin-Yi Gao ,&nbsp;Jian-Guo Liu ,&nbsp;Gang-Wei Wang","doi":"10.1016/j.aml.2025.109615","DOIUrl":"10.1016/j.aml.2025.109615","url":null,"abstract":"<div><div>Almost all the modern electronic devices have the ferromagnetic parts. For a generalized variable-coefficient Kraenkel-Manna-Merle system in a deformed ferrite, which is a generalized variable-coefficient ultrashort wave model, this paper, around a noncharacteristic movable singular manifold, symbolically computes out two magnetic auto-Bäcklund transformations, along with two families of the magnetic soliton solutions. Those results are in their reliance on the coefficients in that system. Electrodynamical implications of our magnetic auto-Bäcklund transformations and magnetic solitons come from the follow factors: the magnetic field, magnitude of the density of saturation magnetization, magnetization density, vacuum velocity of light, gyromagnetic ratio, shape of the wave during the propagation with a very short wavelength assumed, slow time variable describing the propagation over a long time or a long distance linked to the wavelength, inhomogeneity in the ferrite measuring the bond dependence of lattice defects and the corresponding exchange effects (also known as the system deformation) as well as exchange integral between the nearest-neighbor spin-spin interaction for the ferrite. With symbolic computation, the impact of inhomogeneity on the magnetic auto-Bäcklund transformations and on the transmission of magnetic solitons is presented. On the application side, the inhomogeneity could offer the possibility to realize the ultrafast magnetization switching in certain magnetic devices. Future experiments and observations might detect some features predicted in this paper, and relevant physical insights might be expected.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109615"},"PeriodicalIF":2.9,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144240819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balanced Euler methods for the strong approximation of stochastic Volterra integral equations 随机Volterra积分方程强逼近的平衡欧拉方法
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-21 DOI: 10.1016/j.aml.2025.109613
Quanwei Ren, Yanyan He, Jiayi Liu
{"title":"Balanced Euler methods for the strong approximation of stochastic Volterra integral equations","authors":"Quanwei Ren,&nbsp;Yanyan He,&nbsp;Jiayi Liu","doi":"10.1016/j.aml.2025.109613","DOIUrl":"10.1016/j.aml.2025.109613","url":null,"abstract":"<div><div>This work presents a novel class of balanced Euler methods designed for approximating stochastic Volterra integral equations. These methods aim to address certain numerical instabilities commonly encountered with the explicit Euler approach. The study derives the convergence order and stability characteristics of the proposed schemes in the mean-square sense. Additionally, a comprehensive analytical investigation of linear mean-square stability is provided, focusing on convolution test equations. Numerical experiments highlight the stability and convergence performance of the balanced Euler schemes.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"170 ","pages":"Article 109613"},"PeriodicalIF":2.9,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144106436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing HIV transmission through a stochastic system with the log-normal Ornstein–Uhlenbeck process 用对数正态Ornstein-Uhlenbeck过程分析HIV在随机系统中的传播
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-19 DOI: 10.1016/j.aml.2025.109616
Xinhong Zhang, Xue Jiao
{"title":"Analyzing HIV transmission through a stochastic system with the log-normal Ornstein–Uhlenbeck process","authors":"Xinhong Zhang,&nbsp;Xue Jiao","doi":"10.1016/j.aml.2025.109616","DOIUrl":"10.1016/j.aml.2025.109616","url":null,"abstract":"<div><div>This paper establishes an AIDS model that includes both asymptomatic and symptomatic infected individuals, and we assume the transmission rate follows the log-normal Ornstein–Uhlenbeck process, which allows us to develop a stochastic model. For the stochastic model, by constructing appropriate Lyapunov functions, we derive the disease will extinct when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>. The critical value <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> for existence of the stationary distribution is also obtained. Additionally, observation suggests the OU process contributes to disease persistence.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"170 ","pages":"Article 109616"},"PeriodicalIF":2.9,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144124969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast numerical study on spatial nonuniform grids for two-dimensional fractional coupled equations with fractional Neumann boundary conditions 具有分数阶Neumann边界条件的二维分数阶耦合方程空间非均匀网格的快速数值研究
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-17 DOI: 10.1016/j.aml.2025.109609
Jiaxue Kang, Wenping Fan, Zhenhao Lu
{"title":"Fast numerical study on spatial nonuniform grids for two-dimensional fractional coupled equations with fractional Neumann boundary conditions","authors":"Jiaxue Kang,&nbsp;Wenping Fan,&nbsp;Zhenhao Lu","doi":"10.1016/j.aml.2025.109609","DOIUrl":"10.1016/j.aml.2025.109609","url":null,"abstract":"<div><div>In this paper, a study on the fast numerical analysis based on spatial nonuniform grids and inverse problem for the two-dimensional space–time fractional coupled equations with fractional Neumann boundary conditions are conducted. The second order L1<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> method combined with the Crank–Nicolson (CN) method in time and the fractional block-centered finite difference (BCFD) method based on spatial nonuniform grids in space are employed. To improve computational efficiency, a fast version fractional BCFD algorithm based on the Krylov subspace iterative methods and the spatial sum-of-exponentials (SOE) technology is also constructed. Besides, to conduct the fractional parameter identification problem for the coupled model, an efficient hybrid Black Widow Optimization and Cuckoo Search (BWOCS) algorithm is applied. Numerical example is given to verify the correctness and efficiency of the proposed methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109609"},"PeriodicalIF":2.9,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-splitting Fourier spectral method for two-dimensional space fractional Schrödinger–Poisson-Xα model 二维空间分数阶Schrödinger-Poisson-Xα模型的时间分裂傅立叶谱方法
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-17 DOI: 10.1016/j.aml.2025.109610
Pingrui Zhang, Junqing Jia, Xiaoyun Jiang
{"title":"Time-splitting Fourier spectral method for two-dimensional space fractional Schrödinger–Poisson-Xα model","authors":"Pingrui Zhang,&nbsp;Junqing Jia,&nbsp;Xiaoyun Jiang","doi":"10.1016/j.aml.2025.109610","DOIUrl":"10.1016/j.aml.2025.109610","url":null,"abstract":"<div><div>We investigate the two-dimensional space fractional Schrödinger-Poisson-X<span><math><mi>α</mi></math></span> model, which incorporates fractional Laplacian operators to generalize classical quantum mechanics. By leveraging the Strang splitting Fourier spectral method, the model is solved effectively under periodic boundary conditions, ensuring high accuracy and computational efficiency. Numerical experiments confirm the second-order temporal convergence and spectral accuracy in the spatial direction. Various numerical tests are conducted to illustrate the dynamics of the model for different fractional orders, demonstrating its capability to capture complex quantum phenomena in fractional quantum systems.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"170 ","pages":"Article 109610"},"PeriodicalIF":2.9,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144098246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stationary distribution of a stochastic reaction–diffusion predator–prey model with additional food, fear effect and anti-predator behavior 具有额外食物、恐惧效应和反捕食行为的随机反应-扩散捕食者-猎物模型的平稳分布
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-16 DOI: 10.1016/j.aml.2025.109612
Haokun Qi, Jiani Jin, Bing Liu, Baolin Kang
{"title":"Stationary distribution of a stochastic reaction–diffusion predator–prey model with additional food, fear effect and anti-predator behavior","authors":"Haokun Qi,&nbsp;Jiani Jin,&nbsp;Bing Liu,&nbsp;Baolin Kang","doi":"10.1016/j.aml.2025.109612","DOIUrl":"10.1016/j.aml.2025.109612","url":null,"abstract":"<div><div>The stationary distribution, as a fundamental concept in stochastic processes, is of great significance for exploring the long-term behavior and stability of populations. In this paper, a stochastic reaction–diffusion predator–prey model with additional food, fear effect and anti-predator behavior is proposed, in which the stochastic fluctuations are characterized by a Ornstein–Uhlenbeck process. We proved the existence and uniqueness of the stationary distribution of the stochastic model by constructing the Lyapunov function. Moreover, this study extends the work of Qi and Liu (2024).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109612"},"PeriodicalIF":2.9,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144070561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instability of standing waves for cubic nonlinear Schrödinger systems with partial confinement 部分约束三次非线性Schrödinger系统驻波的不稳定性
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-16 DOI: 10.1016/j.aml.2025.109614
Wei Wang , Binhua Feng
{"title":"Instability of standing waves for cubic nonlinear Schrödinger systems with partial confinement","authors":"Wei Wang ,&nbsp;Binhua Feng","doi":"10.1016/j.aml.2025.109614","DOIUrl":"10.1016/j.aml.2025.109614","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider the strong instability of standing waves for the following cubic nonlinear Schrödinger system with partial confinement &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;When &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, Jia, Li and Luo (Discrete Contin. Dyn. Syst. 40, 2020, 2739-2766) investigated the existence of stable standing waves. When &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/m","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"170 ","pages":"Article 109614"},"PeriodicalIF":2.9,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144098348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of positive solution for Klein–Gordon–Maxwell system without subcritical growth and Ambrosetti–Rabinowitz conditions 无亚临界生长Klein-Gordon-Maxwell方程组正解的存在性及Ambrosetti-Rabinowitz条件
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-13 DOI: 10.1016/j.aml.2025.109611
Xin Sun , Yu Duan , Jiu Liu
{"title":"Existence of positive solution for Klein–Gordon–Maxwell system without subcritical growth and Ambrosetti–Rabinowitz conditions","authors":"Xin Sun ,&nbsp;Yu Duan ,&nbsp;Jiu Liu","doi":"10.1016/j.aml.2025.109611","DOIUrl":"10.1016/j.aml.2025.109611","url":null,"abstract":"<div><div>This article concerns the following Klein–Gordon–Maxwell system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>−</mo><mrow><mo>(</mo><mn>2</mn><mi>ω</mi><mo>+</mo><mi>ϕ</mi><mo>)</mo></mrow><mi>ϕ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>λ</mi><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mi>ω</mi><mo>+</mo><mi>ϕ</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>ω</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a constant, <span><math><mrow><mn>4</mn><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mn>6</mn></mrow></math></span>, <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a parameter. When <span><math><mi>f</mi></math></span> only satisfies suplinear conditions but not satisfies subcritical growth and Ambrosetti–Rabinowitz conditions, the existence of positive solution can be proved via variational methods, Moser iteration and perturbation arguments. Our result unifies both critical or supercritical cases and generalizes and improves the existing ones.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109611"},"PeriodicalIF":2.9,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144069230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear stability analysis of 2D incompressible MHD equations with only magnetic diffusion 仅磁扩散的二维不可压缩MHD方程的线性稳定性分析
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-05-10 DOI: 10.1016/j.aml.2025.109600
Jitao Liu, Huning Zhang
{"title":"Linear stability analysis of 2D incompressible MHD equations with only magnetic diffusion","authors":"Jitao Liu,&nbsp;Huning Zhang","doi":"10.1016/j.aml.2025.109600","DOIUrl":"10.1016/j.aml.2025.109600","url":null,"abstract":"<div><div>Although many physical experiments and numerical simulations show that the magnetic field can stabilize and inhibit electrically conducting fluids, whether 2D incompressible MHD equations with only magnetic diffusion develop finite time singularities or not is one of the most challenging problems and remains open. Therefore, this issue has always attracted a lot of attention of mathematicians. Due to its linearized system plays a crucial role, to deeper understand the aforesaid issue, in this paper, we make the first attempt to study its linear stability when the magnetic field close to the equilibrium state <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> in the periodic domain and ultimately proposed the linear stability condition <span><span>(1.4)</span></span>. To be more precise, we show that the solution of its linearized system will be time-asymptotically stable and converge to the equilibrium state in the algebraic rate via the method of spectral analysis, as long as the integrals in the vertical direction of initial perturbations are zeros.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109600"},"PeriodicalIF":2.9,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143941937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信