无亚临界生长Klein-Gordon-Maxwell方程组正解的存在性及Ambrosetti-Rabinowitz条件

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xin Sun , Yu Duan , Jiu Liu
{"title":"无亚临界生长Klein-Gordon-Maxwell方程组正解的存在性及Ambrosetti-Rabinowitz条件","authors":"Xin Sun ,&nbsp;Yu Duan ,&nbsp;Jiu Liu","doi":"10.1016/j.aml.2025.109611","DOIUrl":null,"url":null,"abstract":"<div><div>This article concerns the following Klein–Gordon–Maxwell system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>−</mo><mrow><mo>(</mo><mn>2</mn><mi>ω</mi><mo>+</mo><mi>ϕ</mi><mo>)</mo></mrow><mi>ϕ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>λ</mi><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mi>ω</mi><mo>+</mo><mi>ϕ</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>ω</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a constant, <span><math><mrow><mn>4</mn><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mn>6</mn></mrow></math></span>, <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a parameter. When <span><math><mi>f</mi></math></span> only satisfies suplinear conditions but not satisfies subcritical growth and Ambrosetti–Rabinowitz conditions, the existence of positive solution can be proved via variational methods, Moser iteration and perturbation arguments. Our result unifies both critical or supercritical cases and generalizes and improves the existing ones.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109611"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solution for Klein–Gordon–Maxwell system without subcritical growth and Ambrosetti–Rabinowitz conditions\",\"authors\":\"Xin Sun ,&nbsp;Yu Duan ,&nbsp;Jiu Liu\",\"doi\":\"10.1016/j.aml.2025.109611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article concerns the following Klein–Gordon–Maxwell system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>−</mo><mrow><mo>(</mo><mn>2</mn><mi>ω</mi><mo>+</mo><mi>ϕ</mi><mo>)</mo></mrow><mi>ϕ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>λ</mi><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mi>ω</mi><mo>+</mo><mi>ϕ</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>ω</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a constant, <span><math><mrow><mn>4</mn><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mn>6</mn></mrow></math></span>, <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a parameter. When <span><math><mi>f</mi></math></span> only satisfies suplinear conditions but not satisfies subcritical growth and Ambrosetti–Rabinowitz conditions, the existence of positive solution can be proved via variational methods, Moser iteration and perturbation arguments. Our result unifies both critical or supercritical cases and generalizes and improves the existing ones.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"169 \",\"pages\":\"Article 109611\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001612\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001612","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及以下Klein-Gordon-Maxwell系统- Δu+V(x)u - (2ω+ϕ) u=|u|s - 2u+λf(u),x∈R3,Δϕ=(ω+ϕ)u2,x∈R3,其中ω>;0为常数,4≤s<6, λ>;0为参数。当f只满足上线性条件而不满足亚临界增长条件和ambroseti - rabinowitz条件时,可以通过变分方法、Moser迭代和摄动参数证明正解的存在性。我们的结果统一了临界和超临界两种情况,并对已有的情况进行了推广和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solution for Klein–Gordon–Maxwell system without subcritical growth and Ambrosetti–Rabinowitz conditions
This article concerns the following Klein–Gordon–Maxwell system Δu+V(x)u(2ω+ϕ)ϕu=|u|s2u+λf(u),xR3,Δϕ=(ω+ϕ)u2,xR3,where ω>0 is a constant, 4s<6, λ>0 is a parameter. When f only satisfies suplinear conditions but not satisfies subcritical growth and Ambrosetti–Rabinowitz conditions, the existence of positive solution can be proved via variational methods, Moser iteration and perturbation arguments. Our result unifies both critical or supercritical cases and generalizes and improves the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信