具有分数阶Neumann边界条件的二维分数阶耦合方程空间非均匀网格的快速数值研究

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiaxue Kang, Wenping Fan, Zhenhao Lu
{"title":"具有分数阶Neumann边界条件的二维分数阶耦合方程空间非均匀网格的快速数值研究","authors":"Jiaxue Kang,&nbsp;Wenping Fan,&nbsp;Zhenhao Lu","doi":"10.1016/j.aml.2025.109609","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a study on the fast numerical analysis based on spatial nonuniform grids and inverse problem for the two-dimensional space–time fractional coupled equations with fractional Neumann boundary conditions are conducted. The second order L1<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> method combined with the Crank–Nicolson (CN) method in time and the fractional block-centered finite difference (BCFD) method based on spatial nonuniform grids in space are employed. To improve computational efficiency, a fast version fractional BCFD algorithm based on the Krylov subspace iterative methods and the spatial sum-of-exponentials (SOE) technology is also constructed. Besides, to conduct the fractional parameter identification problem for the coupled model, an efficient hybrid Black Widow Optimization and Cuckoo Search (BWOCS) algorithm is applied. Numerical example is given to verify the correctness and efficiency of the proposed methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109609"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast numerical study on spatial nonuniform grids for two-dimensional fractional coupled equations with fractional Neumann boundary conditions\",\"authors\":\"Jiaxue Kang,&nbsp;Wenping Fan,&nbsp;Zhenhao Lu\",\"doi\":\"10.1016/j.aml.2025.109609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a study on the fast numerical analysis based on spatial nonuniform grids and inverse problem for the two-dimensional space–time fractional coupled equations with fractional Neumann boundary conditions are conducted. The second order L1<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> method combined with the Crank–Nicolson (CN) method in time and the fractional block-centered finite difference (BCFD) method based on spatial nonuniform grids in space are employed. To improve computational efficiency, a fast version fractional BCFD algorithm based on the Krylov subspace iterative methods and the spatial sum-of-exponentials (SOE) technology is also constructed. Besides, to conduct the fractional parameter identification problem for the coupled model, an efficient hybrid Black Widow Optimization and Cuckoo Search (BWOCS) algorithm is applied. Numerical example is given to verify the correctness and efficiency of the proposed methods.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"169 \",\"pages\":\"Article 109609\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001594\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001594","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有分数阶Neumann边界条件的二维时空分数阶耦合方程基于空间非均匀网格的快速数值分析和反问题。在时间上采用二阶L1+方法结合Crank-Nicolson (CN)方法,在空间上采用基于空间非均匀网格的分数块中心有限差分(BCFD)方法。为了提高计算效率,构建了基于Krylov子空间迭代法和空间指数和(SOE)技术的快速版本分数阶BCFD算法。此外,为了对耦合模型进行分数参数辨识问题,采用了一种高效的黑寡妇优化与布谷鸟搜索(BWOCS)混合算法。算例验证了所提方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast numerical study on spatial nonuniform grids for two-dimensional fractional coupled equations with fractional Neumann boundary conditions
In this paper, a study on the fast numerical analysis based on spatial nonuniform grids and inverse problem for the two-dimensional space–time fractional coupled equations with fractional Neumann boundary conditions are conducted. The second order L1+ method combined with the Crank–Nicolson (CN) method in time and the fractional block-centered finite difference (BCFD) method based on spatial nonuniform grids in space are employed. To improve computational efficiency, a fast version fractional BCFD algorithm based on the Krylov subspace iterative methods and the spatial sum-of-exponentials (SOE) technology is also constructed. Besides, to conduct the fractional parameter identification problem for the coupled model, an efficient hybrid Black Widow Optimization and Cuckoo Search (BWOCS) algorithm is applied. Numerical example is given to verify the correctness and efficiency of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信