{"title":"Real solutions to an asymptotically linear Helmholtz equation","authors":"Biao Liu , Ruowen Qiu , Fukun Zhao","doi":"10.1016/j.aml.2025.109473","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study real solutions of the nonlinear Helmholtz equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span> satisfying the asymptotic conditions <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></mfenced><mspace></mspace><mtext>and</mtext><mspace></mspace><mfrac><mrow><msup><mrow><mi>∂</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></mrow><mrow><mi>∂</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>o</mi><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></mfenced><mspace></mspace><mtext>as</mtext><mi>r</mi><mo>=</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi><mtext>.</mtext></mrow></math></span></div><div>Assuming that <span><math><mi>f</mi></math></span> is asymptotically linear at infinity respect to <span><math><mi>u</mi></math></span>, the existence and multiplicity of real solutions are obtained via the variational methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109473"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study real solutions of the nonlinear Helmholtz equation satisfying the asymptotic conditions
Assuming that is asymptotically linear at infinity respect to , the existence and multiplicity of real solutions are obtained via the variational methods.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.