T. L. Collins, A. Schmidt‐Lebuhn, R. Andrew, I. Telford, J. Bruhl
{"title":"There’s gold in them thar hills! Morphology and molecules delimit species in Xerochrysum (Asteraceae; Gnaphalieae) and reveal many new taxa","authors":"T. L. Collins, A. Schmidt‐Lebuhn, R. Andrew, I. Telford, J. Bruhl","doi":"10.1071/SB21014","DOIUrl":"https://doi.org/10.1071/SB21014","url":null,"abstract":"Abstract. Golden everlasting paper daisies in the genus Xerochrysum Tzvelev are iconic Australian native plants grown worldwide. The X. bracteatum species complex has been regarded as taxonomically confusing and in need of revision for over 60 years. We applied morphological and molecular analyses to delimit species, detect common ancestry among populations, and identify putative hybrids in the genus Xerochrysum (Asteraceae: Gnaphalieae). Multiple lines of evidence provided strong support for the recognition of new taxa. Here we describe the following 11 new species: X. andrewiae T.L.Collins & J.J.Bruhl, X. berarngutta T.L.Collins & I.Telford, X. copelandii J.J.Bruhl & I.Telford, X. frutescens J.J.Bruhl & I.Telford, X. gudang T.L.Collins & J.J.Bruhl, X. hispidum T.L.Collins & I.Telford, X. macsweeneyorum T.L.Collins, X. murapan T.L.Collins & I.Telford, X. neoanglicum J.J.Bruhl & I.Telford, X. strictum T.L.Collins, and X. wilsonii T.L.Collins, reinstate Helichrysum banksii A.Cunn. ex DC. (as X. banksii (A.Cunn. ex DC.) T.L.Collins & I.Telford), lectotypify X. banksii and X. papillosum (Labill.) R.J.Bayer, and recircumscribe X. bicolor (Lindl.) R.J.Bayer to include X. halmaturorum Paul G.Wilson and some populations of X. bracteatum sens. lat. from mainland South Australia and Victoria. We also provide revised descriptions of all taxa in the genus, their conservation status, a dichotomous key, tables distinguishing closely related taxa and distribution maps.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"35 1","pages":"120 - 185"},"PeriodicalIF":1.6,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44987630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine Clowes, Rachael M. Fowler, Patrick S. Fahey, Jürgen Kellermann, Gillian Brown, M. Bayly
{"title":"Big trees of small baskets: phylogeny of the Australian genus Spyridium (Rhamnaceae: Pomaderreae), focusing on biogeographic patterns and species circumscriptions","authors":"Catherine Clowes, Rachael M. Fowler, Patrick S. Fahey, Jürgen Kellermann, Gillian Brown, M. Bayly","doi":"10.1071/SB21034","DOIUrl":"https://doi.org/10.1071/SB21034","url":null,"abstract":"Abstract. Spyridium Fenzl is a genus of ~45 species endemic to south-western and south-eastern Australia. This study provides the most comprehensive phylogenies of Spyridium to date, analysing both entire chloroplast genomes and the nuclear ribosomal array (18S–5.8S–26S). There was substantial incongruence between the chloroplast and nuclear phylogenies, creating phylogenetic uncertainty, but some clear relationships and biogeographic patterns could be established. Analyses support the monophyly of Spyridium, identifying an early east–west split at the base of the nuclear phylogeny and deep divergences of New South Wales and Tasmanian endemic clades. We also found evidence of more recent dispersal events between eastern and western Australia and between Tasmania and the mainland. Eleven taxa were found to be monophyletic in the nrDNA phylogeny and two were clearly polyphyletic (S. eriocephalum Fenzl and S. phylicoides Reissek). Although the polyphyly of S. eriocephalum correlates with the two varieties, suggesting distinct taxa, further research is required on S. phylicoides.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"35 1","pages":"95 - 119"},"PeriodicalIF":1.6,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46341235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica M. Prebble, V. V. Symonds, J. Tate, Heidi M. Meudt
{"title":"Taxonomic revision of the southern hemisphere pygmy forget-me-not group (Myosotis; Boraginaceae) based on morphological, population genetic and climate-edaphic niche modelling data","authors":"Jessica M. Prebble, V. V. Symonds, J. Tate, Heidi M. Meudt","doi":"10.1071/SB21031","DOIUrl":"https://doi.org/10.1071/SB21031","url":null,"abstract":"ABSTRACT A taxonomic revision of the southern hemisphere pygmy forget-me-not group (Myosotis L.; Boraginaceae) is presented here. Climate-edaphic niches are modelled and compared for five species in the pygmy group, namely, M. antarctica Hook.f., M. brevis de Lange & Barkla, M. drucei (L.B.Moore) de Lange & Barkla, M. pygmaea Colenso and M. glauca (G.Simpson & J.S.Thomson) de Lange & Barkla, and one unnamed putative taxon, M. “Volcanic Plateau”. In this case, niche-modelling data mostly do not aid species delimitation, but morphological and genetic data provide evidence for recognising the following three species within the group: M. brevis and M. glauca (both endemic to New Zealand), and an enlarged M. antarctica (native to New Zealand, Campbell Island and Chile). Myosotis antarctica is here circumscribed to include M. antarctica sens. strict., M. drucei and M. pygmaea. The following two allopatric subspecies of M. antarctica are recognised on the basis of minor morphological differences: subsp. antarctica (formerly M. antarctica from Campbell Island and Chile, M. drucei and M. “Volcanic Plateau”) and subsp. traillii Kirk (formerly known by New Zealand botanists as M. pygmaea Colenso, an illegitimate name). For all three species, which are considered Threatened or At Risk, most of their genetic variation is partitioned between rather than within populations, meaning that conserving as many populations as possible should be the priority to minimise risk of extinction.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"35 1","pages":"63 - 94"},"PeriodicalIF":1.6,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41932813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simonachne, a new genus for Australia segregated from Ancistrachne s.l. (Poaceae : Panicoideae : Paniceae) and a new subtribe Cleistochloinae","authors":"E. Thompson","doi":"10.1071/SB20024","DOIUrl":"https://doi.org/10.1071/SB20024","url":null,"abstract":"ABSTRACT A new genus, Simonachne E.J.Thomps. is described and Ancistrachne maidenii (A.A.Ham.) Vickery is transferred to it as Simonachne maidenii (A.A.Ham.) E.J.Thomps. The new subtribe Cleistochloinae E.J.Thomps. is described and is composed of four genera, Calyptochloa, Cleistochloa, Dimorphochloa and Simonachne, united by distinctive morphology that is associated with reproductive dimorphism. Phenetic analyses were used to examine the similarities of taxa and to test the consistency of results with variation in analysis inputs. Input variations included the dataset in terms of composition of the samples and morphological characters, and the cluster analysis algorithms, viz. classification, ordination and association measure. A baseline dataset was used for comparison of results and comprised 24 samples and 161 characters relating to anatomy, micro- and macromorphology of spikelets, leaves and fertile culms. Three major clusters were resolved, Cleistochloinae (‘the cleistogamy group‚), Neurachninae in its original sense, and a cluster referred to as the ‘paniculate inflorescence group‚ composed of Ancistrachne s.s., Entolasia and Panicum s.s. The results were congruent with a recent phylogenetic study that showed that Ancistrachne s.l., Cleistochloa s.l. and Dimorphochloa s.l. were not monophyletic. The process provided an array of morphological characters for descriptions of species and for distinguishing taxa at multiple ranks in natural groups, components of alpha and beta taxonomy respectively.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"35 1","pages":"19 - 62"},"PeriodicalIF":1.6,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46539584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy L. Curtis, P. Grierson, J. Batley, Jeremy Naaykens, Rachael M. Fowler, A. Severn-Ellis, K. Thiele
{"title":"Resolution of the Eremophila tietkensii (Scrophulariaceae) species complex based on congruence between morphological and molecular pattern analyses","authors":"Amy L. Curtis, P. Grierson, J. Batley, Jeremy Naaykens, Rachael M. Fowler, A. Severn-Ellis, K. Thiele","doi":"10.1071/SB21005","DOIUrl":"https://doi.org/10.1071/SB21005","url":null,"abstract":"ABSTRACT Eremophila R.Br. comprises at least 238 species endemic to Australia, with many more having not yet been formally described. Three putative new taxa, namely, E. sp. Hamersley Range (K. Walker KW 136), E. sp. Calvert Range (A. A. Burbidge 738) and E. sp. Rudall River (P. G. Wilson 10512), were segregated from a broadly defined E. tietkensii F.Muell. & Tate by J. Hurter at the Western Australian Herbarium in 2012. Both E. sp. Hamersley Range and E. sp. Rudall River are listed as being of conservation concern in Western Australia, the former occurring in the Pilbara region in areas of prospective interest for mining development. We sought to determine whether these phrase-named entities should be formally described as new species, using multivariate analyses of morphometric and molecular data derived from specimens in the Western Australia Herbarium. Eremophila sp. Rudall River could not be adequately separated from E. tietkensii by either morphological or molecular data, and is here included within that species. By contrast, E. sp. Hamersley Range and E. sp. Calvert Range are clearly morphologically and genetically distinct. We thus describe them here as the new species E. naaykensii A.L.Curtis & K.R.Thiele and E. hurteri A.L.Curtis & K.R.Thiele. The recognition of these taxa will help inform their conservation prioritisation and subsequent management.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"35 1","pages":"1 - 18"},"PeriodicalIF":1.6,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42142192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan P. O’Donnell, J. Bruhl, I. Telford, Trevor C. Wilson, H. Zimmer, Guy M. Taseski, R. Andrew
{"title":"Molecular and morphological analyses support recognition of Prostanthera volucris (Lamiaceae), a new species from the Central Tablelands of New South Wales","authors":"Ryan P. O’Donnell, J. Bruhl, I. Telford, Trevor C. Wilson, H. Zimmer, Guy M. Taseski, R. Andrew","doi":"10.1071/SB22017","DOIUrl":"https://doi.org/10.1071/SB22017","url":null,"abstract":"Abstract. Research into the systematics of Prostanthera recently revealed close evolutionary relationship among P. phylicifolia sens. str., the critically endangered P. gilesii, and a population of uncertain identity from the Central Tablelands of New South Wales (NSW), Australia. Previous analyses were unable to establish whether genetic boundaries separated these taxa. This study assessed species boundaries among these three taxa by using a combination of single-nucleotide polymorphisms (SNPs) sampled at the population-scale and multivariate analysis of morphological characters. Ordination, model-based clustering, F-statistics, neighbour-network analysis, phylogenetic analysis, and ancestry coefficient estimates all provided support for discrete genetic differences among the three taxa. Morphological phenetic analysis recovered congruent morphological clusters and identified a suite of corresponding diagnostic characters. This congruence of molecular and morphological evidence supports the presence of three independently evolving lineages, two of which correspond with the previously described P. gilesii and P. phylicifolia sens. str. The third taxon, represented by a single population from the Central Tablelands of NSW, is here described as P. volucris R.P.O’Donnell. A detailed description, diagnostic line drawings and photographs are provided. We evaluate P. volucris as satisfying criteria to be considered Critically Endangered.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"36 1","pages":"1 - 20"},"PeriodicalIF":1.6,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46458779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Renner, Charles S. P. Foster, Joseph T. Miller, D. Murphy
{"title":"Phyllodes and bipinnate leaves of Acacia exhibit contemporary continental-scale environmental correlation and evolutionary transition-rate heterogeneity","authors":"M. Renner, Charles S. P. Foster, Joseph T. Miller, D. Murphy","doi":"10.1071/SB21009","DOIUrl":"https://doi.org/10.1071/SB21009","url":null,"abstract":"Abstract. In Acacia, 90% of species have drought-tolerant phyllodes as their adult foliage, the remaining species have bipinnate leaves. We conducted tests for relationships between foliage type and 35 bioclimatic variables at the continental scale and found significant correlations of both ‘moisture seasonality’ and ‘radiation in the coldest quarter’ with foliage type. Bipinnate species have lower species mean values of each variable, growing in stable soil moisture and generally darker environments (longer nights and lower incident radiation), on average. Evolutionary transformations between bipinnate and phyllodinous adult foliage exhibit asymmetry across the Acacia phylogeny, with transformations from bipinnate leaves to phyllodes occurring times faster than the reverse. At least three (and up to seven) transitions from phyllode to bipinnate adult foliage were inferred. Foliage type in the most recent common ancestor of extant Acacia is unresolved, some analyses favour a phyllodinous ancestor, others a bipinnate ancestor. Most ancestral nodes inferred as having bipinnate adult foliage had median age estimates of less than 5 million years (Ma), half having ages between 3 and 1.5 Ma. Acacia lineages with bipinnate adult foliage diversified during the Pliocene, perhaps in response to wetter climatic conditions experienced by the continental margin during this period.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"34 1","pages":"595 - 608"},"PeriodicalIF":1.6,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42740753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Martins, C. Gurgel, Tracey M. Spokes, V. Cassano
{"title":"Colpomenia species from south and south-eastern Australia (Ectocarpales, Phaeophyceae): a DNA barcoding approach","authors":"N. Martins, C. Gurgel, Tracey M. Spokes, V. Cassano","doi":"10.1071/SB21021","DOIUrl":"https://doi.org/10.1071/SB21021","url":null,"abstract":"Abstract. Defining species in the brown algal genus Colpomenia is a challenging endeavour because of their morphological similarity, overlapping phenotypic variation, the absence of conspicuous diagnostic characters, and often lack of reproductive structures crucial for their identification. Thus, the use of molecular tools has become widely used to study Colpomenia taxonomy and evolution. The following four Colpomenia species are described along the Australian coast: C. claytoniae M.Boo, K.M.Lee, G.Y.Cho & W.Nelson, C. ecuticulata M.J.Parsons, C. peregrina Sauvageau, and C. sinuosa (Mertens ex Roth) Derbès & Solier. The objective of this study was to assess the diversity of Colpomenia species in southern and south-eastern Australia by using DNA barcoding techniques and single-marker species delimitation methods. We generated 44 new COI-5P DNA sequences from nine different populations across three Australian states (South Australia, Victoria and Tasmania), and applied 13 variations of four species delimitation methods (ABDG, SPN, PTP, GMYC). Our results recognised three Colpomenia species in the region, namely, C. sinuosa, C. claytoniae, and C. peregrina. Colpomenia sinuosa is the most widely distributed species in Australia. Colpomenia peregrina and C. claytoniae presented high levels of intraspecific genetic divergence. We did not find C. ecuticulata, although it has been previously reported from nearby our sampling area.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"34 1","pages":"587 - 594"},"PeriodicalIF":1.6,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48329495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arid Australia as a source of plant diversity: the origin and climatic evolution of Ptilotus (Amaranthaceae)","authors":"T. Hammer, M. Renton, L. Mucina, K. Thiele","doi":"10.1071/sb21012","DOIUrl":"https://doi.org/10.1071/sb21012","url":null,"abstract":"\u0000In the present study, we tested the chronological and geographic origins of the mostly arid Australian Ptilotus (Amaranthaceae) and its close relatives (i.e. the ‘aervoids’) by reconstructing a dated phylogeny with near-comprehensive sampling for Ptilotus and estimating ancestral geographic ranges. We investigated climatic niche evolution within Ptilotus and identified likely climatic origins and subsequent niche shifts by reconstructing ancestral states of climatic variables on the phylogeny, which was visualised using a phyloecospace approach. Geospatial analyses were employed to identify probable diversification hotspots within Australia. We inferred that the aervoids originated in Oligocene Africa–Asia and that Ptilotus arrived in northern Australia by dispersal in the Early Miocene. Subsequent diversification of Ptilotus was rapid, giving rise to all major clades in the western Eremaean by the time of an aridification pulse in the Middle Miocene. Climatic niche shifts from the arid Eremaean into monsoonal northern and temperate southern Australia are apparent for multiple independent species groups. Our analyses support the hypothesis that a pre-adaptation to aridity and early arrival in an aridifying Australia were integral to the success of Ptilotus, and that the Eremaean has been a source of biodiversity in the genus and for independent radiations into neighbouring climatic zones.\u0000","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44890721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Davison, D. Giustiniano, N. Bougher, L. E. McGurk, E. Watkin
{"title":"Additions to Amanita (Amanitaceae, Agaricales) section Arenariae from south-western Australia","authors":"E. Davison, D. Giustiniano, N. Bougher, L. E. McGurk, E. Watkin","doi":"10.1071/SB21017","DOIUrl":"https://doi.org/10.1071/SB21017","url":null,"abstract":"Abstract. A recent molecular phylogeny of Amanita recognises three subgenera and 11 sections. Members of subgenus Amanitina are characterised by amyloid spores and a mycorrhizal habit. Section Arenariae falls within this subgenus. Members of this section are known only from southern Australia; they are either sequestrate (secotioid) or agaricoid and lack clamp connections. We describe the following three additional secotioid species: Amanita arenarioides Bougher, E.M.Davison & Giustiniano, A. compacta Bougher, E.M.Davison & Giustiniano and A. pseudoarenaria E.M.Davison, Giustiniano & Bougher, which are separated on macroscopic appearance, spore shape and genetic sequences. We also describe two agaricoid species, namely, A. pupatuju E.M.Davison, Giustiniano, McGurk & E.L.J.Watkin, and A sabulosa E.M.Davison & Giustiniano, which are separated on bulb shape and genetic sequences. We provide expanded descriptions of A. arenaria (O.K.Mill. & E.Horak) Justo and A. griselloides D.A.Reid; we also synonymise A. dumosorum D.A.Reid with A. peltigera D.A.Reid. A revised diagnosis and description of section Arenariae is provided, together with a key to currently recognised member of this section.","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"34 1","pages":"541 - 569"},"PeriodicalIF":1.6,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42509534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}