{"title":"干旱的澳大利亚作为植物多样性的来源:苦莲(苋科)的起源和气候演变","authors":"T. Hammer, M. Renton, L. Mucina, K. Thiele","doi":"10.1071/sb21012","DOIUrl":null,"url":null,"abstract":"\nIn the present study, we tested the chronological and geographic origins of the mostly arid Australian Ptilotus (Amaranthaceae) and its close relatives (i.e. the ‘aervoids’) by reconstructing a dated phylogeny with near-comprehensive sampling for Ptilotus and estimating ancestral geographic ranges. We investigated climatic niche evolution within Ptilotus and identified likely climatic origins and subsequent niche shifts by reconstructing ancestral states of climatic variables on the phylogeny, which was visualised using a phyloecospace approach. Geospatial analyses were employed to identify probable diversification hotspots within Australia. We inferred that the aervoids originated in Oligocene Africa–Asia and that Ptilotus arrived in northern Australia by dispersal in the Early Miocene. Subsequent diversification of Ptilotus was rapid, giving rise to all major clades in the western Eremaean by the time of an aridification pulse in the Middle Miocene. Climatic niche shifts from the arid Eremaean into monsoonal northern and temperate southern Australia are apparent for multiple independent species groups. Our analyses support the hypothesis that a pre-adaptation to aridity and early arrival in an aridifying Australia were integral to the success of Ptilotus, and that the Eremaean has been a source of biodiversity in the genus and for independent radiations into neighbouring climatic zones.\n","PeriodicalId":55416,"journal":{"name":"Australian Systematic Botany","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arid Australia as a source of plant diversity: the origin and climatic evolution of Ptilotus (Amaranthaceae)\",\"authors\":\"T. Hammer, M. Renton, L. Mucina, K. Thiele\",\"doi\":\"10.1071/sb21012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIn the present study, we tested the chronological and geographic origins of the mostly arid Australian Ptilotus (Amaranthaceae) and its close relatives (i.e. the ‘aervoids’) by reconstructing a dated phylogeny with near-comprehensive sampling for Ptilotus and estimating ancestral geographic ranges. We investigated climatic niche evolution within Ptilotus and identified likely climatic origins and subsequent niche shifts by reconstructing ancestral states of climatic variables on the phylogeny, which was visualised using a phyloecospace approach. Geospatial analyses were employed to identify probable diversification hotspots within Australia. We inferred that the aervoids originated in Oligocene Africa–Asia and that Ptilotus arrived in northern Australia by dispersal in the Early Miocene. Subsequent diversification of Ptilotus was rapid, giving rise to all major clades in the western Eremaean by the time of an aridification pulse in the Middle Miocene. Climatic niche shifts from the arid Eremaean into monsoonal northern and temperate southern Australia are apparent for multiple independent species groups. Our analyses support the hypothesis that a pre-adaptation to aridity and early arrival in an aridifying Australia were integral to the success of Ptilotus, and that the Eremaean has been a source of biodiversity in the genus and for independent radiations into neighbouring climatic zones.\\n\",\"PeriodicalId\":55416,\"journal\":{\"name\":\"Australian Systematic Botany\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Systematic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/sb21012\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Systematic Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/sb21012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Arid Australia as a source of plant diversity: the origin and climatic evolution of Ptilotus (Amaranthaceae)
In the present study, we tested the chronological and geographic origins of the mostly arid Australian Ptilotus (Amaranthaceae) and its close relatives (i.e. the ‘aervoids’) by reconstructing a dated phylogeny with near-comprehensive sampling for Ptilotus and estimating ancestral geographic ranges. We investigated climatic niche evolution within Ptilotus and identified likely climatic origins and subsequent niche shifts by reconstructing ancestral states of climatic variables on the phylogeny, which was visualised using a phyloecospace approach. Geospatial analyses were employed to identify probable diversification hotspots within Australia. We inferred that the aervoids originated in Oligocene Africa–Asia and that Ptilotus arrived in northern Australia by dispersal in the Early Miocene. Subsequent diversification of Ptilotus was rapid, giving rise to all major clades in the western Eremaean by the time of an aridification pulse in the Middle Miocene. Climatic niche shifts from the arid Eremaean into monsoonal northern and temperate southern Australia are apparent for multiple independent species groups. Our analyses support the hypothesis that a pre-adaptation to aridity and early arrival in an aridifying Australia were integral to the success of Ptilotus, and that the Eremaean has been a source of biodiversity in the genus and for independent radiations into neighbouring climatic zones.
期刊介绍:
Australian Systematic Botany is an international journal devoted to the systematics, taxonomy, and related aspects of biogeography and evolution of all algae, fungi and plants, including fossils. Descriptive taxonomic papers should normally constitute a comprehensive treatment of a group. Short papers on individual species and nomenclatural papers must contain significant new information of broader interest to be considered. The prestigious L.A.S. Johnson Review Series is published. Other review articles will also be considered. All papers are peer reviewed.
Australian Systematic Botany is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.