Current Topics in Developmental Biology最新文献

筛选
英文 中文
The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations. 视黄酸结合蛋白和视黄酸降解酶在调节视黄酸浓度方面的相互作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-10-24 DOI: 10.1016/bs.ctdb.2024.09.001
Nina Isoherranen, Yue Winnie Wen
{"title":"The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations.","authors":"Nina Isoherranen, Yue Winnie Wen","doi":"10.1016/bs.ctdb.2024.09.001","DOIUrl":"10.1016/bs.ctdb.2024.09.001","url":null,"abstract":"<p><p>The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells. As a consequence, free atRA concentrations in cells are expected to be exceedingly low. As such mechanisms must exist that allow sufficiently high atRA concentrations to occur for binding to retinoic acid receptor (RARs) and for RAR mediated signaling. Kinetic simulations suggest that cellular retinoic acid binding proteins (CRABPs) provide a cytosolic reservoir for atRA to allow high enough cytosolic concentrations that enable RAR signaling. Yet, the different CRABP family members CRABP1 and CRABP2 may serve different functions in this context. CRABP1 may reside in the cytosol as a member of a cytosolic signalosome and CRABP2 may bind atRA in the cytosol and localize to the nucleus. Both CRABPs appear to interact with the atRA-degrading cytochrome P450 (CYP) family 26 enzymes in the endoplasmic reticulum. These interactions, together with the expression levels of the CRABPs and CYP26s, likely modulate cellular atRA concentration gradients and tissue atRA concentrations in a tightly coordinated manner. This review provides a summary of the current knowledge of atRA distribution, metabolism and protein binding and how these characteristics may alter tissue atRA concentrations.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"167-200"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye. 早期维甲酸信号组织身体轴并定义前肢和眼睛的区域。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.1016/bs.ctdb.2024.10.002
Gregg Duester
{"title":"Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye.","authors":"Gregg Duester","doi":"10.1016/bs.ctdb.2024.10.002","DOIUrl":"10.1016/bs.ctdb.2024.10.002","url":null,"abstract":"<p><p>All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes. In mouse embryos, ATRA is first generated at stage E7.5 by ATRA-generating enzymes whose genes are first expressed at that stage. This article focuses upon what ATRA normally does at early stages based upon these knockout studies. It has been observed that early-generated ATRA performs three essential functions: (1) activation of genes that control hindbrain and spinal cord patterning; (2) repression of Fgf8 in the heart field and caudal progenitors to provide an FGF8-free region in the trunk essential for somitogenesis, heart morphogenesis, and initiation of forelimb fields; and (3) actions that stimulate invagination of the optic vesicle to form the optic cup.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"1-32"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterning the nephron: Forming an axial polarity with distal and proximal specialization. 肾元模式:形成远端和近端特化的轴向极性。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-01-28 DOI: 10.1016/bs.ctdb.2025.01.005
Nils Olof Lindström, Jessica May Vanslambrouck
{"title":"Patterning the nephron: Forming an axial polarity with distal and proximal specialization.","authors":"Nils Olof Lindström, Jessica May Vanslambrouck","doi":"10.1016/bs.ctdb.2025.01.005","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2025.01.005","url":null,"abstract":"<p><p>Nephron formation and patterning are driven by complex cell biology. Progenitors migrate, transition into epithelia, and generate an axial epithelial polarity with distinct transcriptional signatures, regulating virtually all physiologies of the maturing kidney post birth. Here we review current insights into mammalian nephrogenesis and discuss how the nephron forms and patterns along its proximal-distal axis during embryonic and fetal development. Genetic pathways that are necessary for this process are discussed and integrated into the cell biology and morphogenetic programs underpinning nephrogenesis. Together, these views outline a developmental blueprint for replicating nephron formation in vitro.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"163 ","pages":"83-103"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144049476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitamin A supply in the eye and establishment of the visual cycle. 维生素A在眼睛的供应和视觉周期的建立。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-10-02 DOI: 10.1016/bs.ctdb.2024.09.003
Sepalika Bandara, Johannes von Lintig
{"title":"Vitamin A supply in the eye and establishment of the visual cycle.","authors":"Sepalika Bandara, Johannes von Lintig","doi":"10.1016/bs.ctdb.2024.09.003","DOIUrl":"10.1016/bs.ctdb.2024.09.003","url":null,"abstract":"<p><p>Animals perceiving light through visual pigments have evolved pathways for absorbing, transporting, and metabolizing the precursors essential for synthesis of their retinylidene chromophores. Over the past decades, our understanding of this metabolism has grown significantly. Through genetic manipulation, researchers gained insights into the metabolic complexity of the pathways mediating the flow of chromophore precursors throughout the body, and their enrichment within the eyes. This exploration has identified transport proteins and metabolizing enzymes for these essential lipids and has revealed some of the fundamental regulatory mechanisms governing this process. What emerges is a complex framework at play that maintains ocular retinoid homeostasis and functions. This review summarizes the recent advancements and highlights future research directions that may deepen our understanding of this complex metabolism.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"319-348"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12272750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renal ciliopathies. 肾ciliopathies。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-03-18 DOI: 10.1016/bs.ctdb.2025.01.009
Laura A Devlin, Rebecca M Dewhurst, Praveen D Sudhindar, John A Sayer
{"title":"Renal ciliopathies.","authors":"Laura A Devlin, Rebecca M Dewhurst, Praveen D Sudhindar, John A Sayer","doi":"10.1016/bs.ctdb.2025.01.009","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2025.01.009","url":null,"abstract":"<p><p>Primary cilia are essential cellular organelles with pivotal roles in many signalling pathways. Here we provide an overview of the role of primary cilia within the kidney, starting with primary ciliary structure and key protein complexes. We then highlight the specialised functions of primary cilia, emphasising their role in a group of diseases known as renal ciliopathies. These conditions include forms of polycystic kidney disease, nephronophthisis, and other syndromic ciliopathies, such as Joubert syndrome and Bardet-Biedl syndrome. We explore models of renal ciliopathies, both in vitro and in vivo, shedding light on the molecular mechanisms underlying these diseases including Wnt and Hedgehog signalling pathways, inflammation, and cellular metabolism. Finally, we discuss therapeutic approaches, from current treatments to cutting-edge preclinical research and clinical trials.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"163 ","pages":"229-305"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144057587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion channels and transporters involved in calcium flux regulation in mammalian sperm. 哺乳动物精子中钙通量调节的离子通道和转运体。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-03-13 DOI: 10.1016/bs.ctdb.2025.01.006
Claudia Sánchez-Cárdenas, Enrique I Oliver, Julio C Chávez, Guillermina M Luque, Arturo Hernández-Cruz, Mariano G Buffone, Alberto Darszon, Pablo E Visconti, Ana Romarowski
{"title":"Ion channels and transporters involved in calcium flux regulation in mammalian sperm.","authors":"Claudia Sánchez-Cárdenas, Enrique I Oliver, Julio C Chávez, Guillermina M Luque, Arturo Hernández-Cruz, Mariano G Buffone, Alberto Darszon, Pablo E Visconti, Ana Romarowski","doi":"10.1016/bs.ctdb.2025.01.006","DOIUrl":"10.1016/bs.ctdb.2025.01.006","url":null,"abstract":"<p><p>After ejaculation, mammalian spermatozoa are not capable of fertilizing a metaphase II-arrested egg. They require to undergo a series of biochemical and physiological processes collectively known as capacitation. In all these processes, the regulation of calcium ions fluxes plays essential roles and involves participation of many channels and transporters localized in the plasma membrane as well as in the membrane of intracellular organelles. In mammalian sperm, a fraction of these molecules has been proposed to contribute to mature sperm function. However, in many cases, the evidence for the presence of a given protein is based on the use of agonists and antagonists with more than one target. In this review, we will critically analyze the published evidence supporting the presence of these molecules in mammalian sperm with special emphasis to methods involving tandem mass spectrometry identification, electrophysiological evidence and controlled immunoassays.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"351-385"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human kidney organoids for modeling the development of different diseases. 人类肾脏类器官用于模拟不同疾病的发展。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-02-06 DOI: 10.1016/bs.ctdb.2024.12.001
Elena Ceccotti, Armina Semnani, Benedetta Bussolati, Stefania Bruno
{"title":"Human kidney organoids for modeling the development of different diseases.","authors":"Elena Ceccotti, Armina Semnani, Benedetta Bussolati, Stefania Bruno","doi":"10.1016/bs.ctdb.2024.12.001","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.12.001","url":null,"abstract":"<p><p>The increasing incidence of kidney diseases has highlighted the need for in vitro experimental models to mimic disease development and to test new therapeutic approaches. Traditional two-dimensional in vitro experimental models are not fully able to recapitulate renal diseases. Instead, kidney organoids represent three-dimensional models that better mimic the human organ from both structural and functional points of view. Human pluripotent stem cells (PSCs), both embryonic and induced, are ideal sources for generating renal organoids. These organoids contain all renal cell types and the protocols to differentiate PSCs into renal organoids consist of three different stages that recapitulate embryonic development: mesodermal induction, nephron progenitor formation, and nephron differentiation. Recently it has been establish a renal organoid model where collecting ducts are also present. In this case, the presence of ureteric bud progenitor cells is essential. Renal organoids are particularly useful for studying genetic diseases, by introducing the specific mutations in PSCs by genome editing or generating organoids from patient-derived PSCs. Moreover, renal organoids represent promising models in toxicology studies and testing new therapeutic approaches. Renal organoids can be established also from adult stem cells. This type of organoid, named tubuloid, is composed only of epithelial cells and recapitulates the tissue repair process. The tubuloids can be generated from adult stem or progenitor cells, obtained from renal biopsies or urine, and are promising in vitro models for studying tubular functions, diseases, and regeneration. Tubuloids can be derived from patients and permit the study of genetic diseases, performing personalized drug screening and modeling renal pathologies.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"163 ","pages":"364-393"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. 没有转录,没有问题:蛋白磷酸化的改变和从卵母细胞到胚胎的转变。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-02-18 DOI: 10.1016/bs.ctdb.2025.01.001
Jonathon M Thomalla, Mariana F Wolfner
{"title":"No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo.","authors":"Jonathon M Thomalla, Mariana F Wolfner","doi":"10.1016/bs.ctdb.2025.01.001","DOIUrl":"10.1016/bs.ctdb.2025.01.001","url":null,"abstract":"<p><p>Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"165-205"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From neural crest migration to the onset of gangliogenesis. 从神经嵴迁移到神经节发生的开始。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-03-13 DOI: 10.1016/bs.ctdb.2025.02.003
Hugo A Urrutia, Marianne E Bronner
{"title":"From neural crest migration to the onset of gangliogenesis.","authors":"Hugo A Urrutia, Marianne E Bronner","doi":"10.1016/bs.ctdb.2025.02.003","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2025.02.003","url":null,"abstract":"<p><p>The neural crest is a highly migratory and multipotent cell population that contributes to many defining features of vertebrates. As a uniquely vertebrate cell type, the neural crest is an excellent model for studying cell lineage and diversification during embryonic development because of its multipotency, motility, and capacity to form a plethora of derivatives. Neural crest cells migrate extensively throughout the body and contribute to many of the defining features of vertebrate embryos, including the craniofacial skeleton, most of the peripheral nervous system and pigmentation of the skin. What guides their migration and subsequent formation of discrete structures? Interactions between neural crest cells and their environment, including other cell types like placode cells, play a major role in guiding their migration and condensation into numerous derivatives. In this review, we discuss aspects of neural crest induction, migration and axial level differences, highlighting what is currently known regarding molecular cues that govern their formation, migratory behavior, and differentiation as they reach their final destinations. We particularly focus on formation of cranial sensory ganglia. New technologies are playing an important role in furthering our understanding of the molecular mechanisms underlying neural crest migration and what leads to cessation of their movement and onset of differentiation.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"164 ","pages":"67-108"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144509536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside influences: The impact of extracellular matrix mechanics on cell migration. 外界影响:细胞外基质力学对细胞迁移的影响。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-01-28 DOI: 10.1016/bs.ctdb.2025.01.003
Ronen Zaidel-Bar, Priti Agarwal
{"title":"Outside influences: The impact of extracellular matrix mechanics on cell migration.","authors":"Ronen Zaidel-Bar, Priti Agarwal","doi":"10.1016/bs.ctdb.2025.01.003","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2025.01.003","url":null,"abstract":"<p><p>\"No cell is an island\" - highlights the interconnectedness of cellular behavior and the extracellular matrix (ECM). Cell migration is inherently contextual, as cells navigate and adapt to their environments, reshaping the ECM while being influenced by its properties. This review focuses on the mechanical characteristics of the ECM-specifically its architecture, porosity, dynamics, and stiffness-and how these attributes affect cell behavior and migration strategies. We discuss how the mechanical properties are modulated by the composition and arrangement of ECM components and the role of enzymatic activities, including crosslinking and matrix metalloproteinases. By presenting examples from vertebrate and invertebrate developmental models, we demonstrate how ECM mechanics dictate cell migration at various biological scales. Additionally, we examine the importance of cell-matrix adhesions in regulating migration speed and direction. While in vitro studies have advanced our understanding of the molecular mechanisms at play, significant questions persist regarding the regulation of cell migration by ECM mechanics in vivo. Ultimately, this synthesis aims to illuminate the complexities of cell-ECM mechanical interactions, pointing the way for future research that may unveil novel insights into how ECM mechanics influences cell migration during development and disease.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"164 ","pages":"29-65"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144509537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信