Current Topics in Developmental Biology最新文献

筛选
英文 中文
Cell polarity in the protist-to-animal transition. 原生生物向动物转变过程中的细胞极性。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.03.001
Thibaut Brunet, David S Booth
{"title":"Cell polarity in the protist-to-animal transition.","authors":"Thibaut Brunet,&nbsp;David S Booth","doi":"10.1016/bs.ctdb.2023.03.001","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.03.001","url":null,"abstract":"<p><p>A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the \"polarity network\" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of \"polarity proteins\" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"154 ","pages":"1-36"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
From injury to patterning-MAPKs and Wnt signaling in Hydra. 从损伤到九头蛇的mapks和Wnt信号。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.01.003
Anja Tursch, Thomas W Holstein
{"title":"From injury to patterning-MAPKs and Wnt signaling in Hydra.","authors":"Anja Tursch,&nbsp;Thomas W Holstein","doi":"10.1016/bs.ctdb.2023.01.003","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.01.003","url":null,"abstract":"<p><p>Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"381-417"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9625462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Preface. 序言
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/S0070-2153(23)00054-6
Terry P Yamaguchi, Karl Willert
{"title":"Preface.","authors":"Terry P Yamaguchi, Karl Willert","doi":"10.1016/S0070-2153(23)00054-6","DOIUrl":"10.1016/S0070-2153(23)00054-6","url":null,"abstract":"","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"xv-xvi"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9192709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging mechanisms and roles of meiotic crossover repression at centromeres. 中心粒减数分裂交叉抑制的新机制和作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-07-25 DOI: 10.1016/bs.ctdb.2022.06.003
Sucharita Sen, Ananya Dodamani, Mridula Nambiar
{"title":"Emerging mechanisms and roles of meiotic crossover repression at centromeres.","authors":"Sucharita Sen, Ananya Dodamani, Mridula Nambiar","doi":"10.1016/bs.ctdb.2022.06.003","DOIUrl":"10.1016/bs.ctdb.2022.06.003","url":null,"abstract":"<p><p>Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"155-190"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. 非典型的 WNT5A-ROR 信号传导:古老发育途径的新视角
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2023-03-17 DOI: 10.1016/bs.ctdb.2023.01.009
Sara E Konopelski Snavely, Srisathya Srinivasan, Courtney A Dreyer, Jia Tan, Kermit L Carraway, Hsin-Yi Henry Ho
{"title":"Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway.","authors":"Sara E Konopelski Snavely, Srisathya Srinivasan, Courtney A Dreyer, Jia Tan, Kermit L Carraway, Hsin-Yi Henry Ho","doi":"10.1016/bs.ctdb.2023.01.009","DOIUrl":"10.1016/bs.ctdb.2023.01.009","url":null,"abstract":"<p><p>Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"195-227"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9437614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Wnt signaling and planar cell polarity in left-right asymmetry. Wnt信号和平面细胞极性在左右不对称中的作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.01.008
Katsura Minegishi, Xiaorei Sai, Hiroshi Hamada
{"title":"Role of Wnt signaling and planar cell polarity in left-right asymmetry.","authors":"Katsura Minegishi,&nbsp;Xiaorei Sai,&nbsp;Hiroshi Hamada","doi":"10.1016/bs.ctdb.2023.01.008","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.01.008","url":null,"abstract":"<p><p>Wnt signaling plays essential roles in multiple steps of left-right (L-R) determination in development. First, canonical Wnt signaling is required to form the node, where L-R symmetry breaking takes place. Secondly, planar cell polarity (PCP) driven by non-canonical Wnt signaling polarizes node cells along the anterio-posterior (A-P) axis and provides the tilt of rotating cilia at the node, which generate the leftward fluid flow. Thus, reciprocal expression of Wnt5a/5b and their inhibitors Sfrp1, 2, 5 generates a gradient of Wnt5 activity along the embryo's anterior-posterior (A-P) axis. This polarizes cells at the node, by placing PCP core proteins on the anterior or posterior side of each node cell. Polarized PCP proteins subsequently induce asymmetric organization of microtubules along the A-P axis, which is thought to push the centrally localized basal body toward the posterior side of a node cell. Motile cilia that extend from the posteriorly-shifted basal body is tilted toward the posterior side of the embryo. Thirdly, canonical-Wnt signaling regulates the level and expansion of Nodal activity and establishes L-R asymmetric Nodal activity at the node, the first molecular asymmetry in the mouse embryo. Overall, both canonical and non-canonical Wnt signalings are essential for L-R symmetry breaking.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"181-193"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9249892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wnt signaling in whole-body regeneration. Wnt信号在全身再生中的作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.01.007
Christian P Petersen
{"title":"Wnt signaling in whole-body regeneration.","authors":"Christian P Petersen","doi":"10.1016/bs.ctdb.2023.01.007","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.01.007","url":null,"abstract":"<p><p>Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"347-380"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9256029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The complex relationship of Wnt-signaling pathways and cilia. wnt信号通路与纤毛的复杂关系。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2023-10-17 DOI: 10.1016/bs.ctdb.2023.09.002
Linh T Vuong, Marek Mlodzik
{"title":"The complex relationship of Wnt-signaling pathways and cilia.","authors":"Linh T Vuong, Marek Mlodzik","doi":"10.1016/bs.ctdb.2023.09.002","DOIUrl":"10.1016/bs.ctdb.2023.09.002","url":null,"abstract":"<p><p>Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"155 ","pages":"95-125"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. 患者干细胞衍生的体外疾病模型用于开发视网膜纤毛病的新疗法。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2023-11-04 DOI: 10.1016/bs.ctdb.2023.09.003
Kamil Kruczek, Anand Swaroop
{"title":"Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies.","authors":"Kamil Kruczek, Anand Swaroop","doi":"10.1016/bs.ctdb.2023.09.003","DOIUrl":"10.1016/bs.ctdb.2023.09.003","url":null,"abstract":"<p><p>Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"155 ","pages":"127-163"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unwinding during stressful times: Mechanisms of helicases in meiotic recombination. 在应激时解旋:减数分裂重组中螺旋酶的作用机制
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-07-18 DOI: 10.1016/bs.ctdb.2022.06.004
Magdalena Firlej, John R Weir
{"title":"Unwinding during stressful times: Mechanisms of helicases in meiotic recombination.","authors":"Magdalena Firlej, John R Weir","doi":"10.1016/bs.ctdb.2022.06.004","DOIUrl":"10.1016/bs.ctdb.2022.06.004","url":null,"abstract":"<p><p>Successful meiosis I requires that homologous chromosomes be correctly linked before they are segregated. In most organisms this physical linkage is achieved through the generation of crossovers between the homologs. Meiotic recombination co-opts and modifies the canonical homologous recombination pathway to successfully generate crossovers One of the central components of this pathway are a number of conserved DNA helicases. Helicases couple nucleic acid binding to nucleotide hydrolysis and use this activity to modify DNA or protein-DNA substrates. During meiosis I it is necessary for the cell to modulate the canonical DNA repair pathways in order to facilitate the generation of interhomolog crossovers. Many of these meiotic modulations take place in pathways involving DNA helicases, or with a meiosis specific helicase. This short review explores what is currently understood about these helicases, their interaction partners, and the role of regulatory modifications during meiosis I. We focus in particular on the molecular structure and mechanisms of these helicases.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"191-215"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10584875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信