The fusion of physics and biology in early mammalian embryogenesis.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-06-21 DOI:10.1016/bs.ctdb.2024.05.001
Walter Piszker, Mijo Simunovic
{"title":"The fusion of physics and biology in early mammalian embryogenesis.","authors":"Walter Piszker, Mijo Simunovic","doi":"10.1016/bs.ctdb.2024.05.001","DOIUrl":null,"url":null,"abstract":"<p><p>Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"160 ","pages":"31-64"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.05.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.

早期哺乳动物胚胎发育过程中物理学和生物学的融合。
胚胎发生中的生物力学是一个动态领域,它将塑造哺乳动物胚胎最初几天的物理力和生物过程交织在一起。从胚泡形成过程中的第一次细胞命运分叉到胃形成过程中复杂的对称性破坏和组织重塑,机械线索似乎在细胞命运决定和组织形态形成中起着关键作用。最近,小鼠和人类胚胎培养、哺乳动物胚胎干细胞建模和生物材料设计方面取得了长足进步,揭示了细胞力、细胞极化和细胞外基质在影响细胞分化和形态发生中的作用。本章重点介绍了生物物理机制在囊胚形成、胚胎植入和早期胃形成过程中的重要功能,在这些过程中,细胞骨架和细胞外基质硬度之间的相互作用协调了错综复杂的胚胎形成和胎盘规格。随着胚泡、胚胃和其他类型胚胎等体外模型的发展,已开始忠实再现人类发育阶段,为探索早期发育的生物物理基础提供了新途径。合成生物学与先进生物材料的结合正在提高我们模仿和研究这些过程的精确度。展望未来,我们强调 CRISPR 介导的基因组扰动与实时成像相结合的潜力,以发现新的机械敏感途径,并应用工程生物材料来微调有利于胚胎发育的机械条件。这一综合研究不仅弥合了实验模型与体内条件之间的差距,推进了哺乳动物胚胎发生的基础发育生物学研究,还为利用生物机械学见解为再生医学提供信息奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信