Current Topics in Developmental Biology最新文献

筛选
英文 中文
Muscle stem cells as immunomodulator during regeneration. 肌肉干细胞作为再生过程中的免疫调节剂
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-15 DOI: 10.1016/bs.ctdb.2024.01.010
H Rex Xu, Victor V Le, Stephanie N Oprescu, Shihuan Kuang
{"title":"Muscle stem cells as immunomodulator during regeneration.","authors":"H Rex Xu, Victor V Le, Stephanie N Oprescu, Shihuan Kuang","doi":"10.1016/bs.ctdb.2024.01.010","DOIUrl":"10.1016/bs.ctdb.2024.01.010","url":null,"abstract":"<p><p>The skeletal muscle is well known for its remarkable ability to regenerate after injuries. The regeneration is a complex and dynamic process that involves muscle stem cells (also called muscle satellite cells, MuSCs), fibro-adipogenic progenitors (FAPs), immune cells, and other muscle-resident cell populations. The MuSCs are the myogenic cell populaiton that contribute nuclei directly to the regenerated myofibers, while the other cell types collaboratively establish a microenvironment that facilitates myogenesis of MuSCs. The myogenic process includes activation, proliferation and differentiationof MuSCs, and subsequent fusion their descendent mononuclear myocytes into multinuclear myotubes. While the contributions of FAPs and immune cells to this microenvironment have been well studied, the influence of MuSCs on other cell types remains poorly understood. This review explores recent evidence supporting the potential role of MuSCs as immunomodulators during muscle regeneration, either through cytokine production or ligand-receptor interactions.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"221-238"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Satellite cells in the growth and maintenance of muscle. 卫星细胞在肌肉生长和维持过程中的作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-15 DOI: 10.1016/bs.ctdb.2024.01.020
John F Bachman, Joe V Chakkalakal
{"title":"Satellite cells in the growth and maintenance of muscle.","authors":"John F Bachman, Joe V Chakkalakal","doi":"10.1016/bs.ctdb.2024.01.020","DOIUrl":"10.1016/bs.ctdb.2024.01.020","url":null,"abstract":"<p><p>Embryonic skeletal muscle growth is contingent upon a population of somite derived satellite cells, however, the contribution of these cells to early postnatal skeletal muscle growth remains relatively high. As prepubertal postnatal development proceeds, the activity and contribution of satellite cells to skeletal muscle growth diminishes. Eventually, at around puberty, a population of satellite cells escapes terminal commitment, continues to express the paired box transcription factor Pax7, and reside in a quiescent state orbiting the myofiber periphery adjacent to the basal lamina. After adolescence, some satellite cell contributions to muscle maintenance and adaptation occur, however, their necessity is reduced relative to embryonic, early postnatal, and prepubertal growth.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage lineages in heart development and regeneration. 心脏发育和再生过程中的巨噬细胞系
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-24 DOI: 10.1016/bs.ctdb.2024.01.004
Na Xu, Brittany A Gonzalez, Katherine E Yutzey
{"title":"Macrophage lineages in heart development and regeneration.","authors":"Na Xu, Brittany A Gonzalez, Katherine E Yutzey","doi":"10.1016/bs.ctdb.2024.01.004","DOIUrl":"10.1016/bs.ctdb.2024.01.004","url":null,"abstract":"<p><p>During development, macrophage subpopulations derived from hematopoietic progenitors take up residence in the developing heart. Embryonic macrophages are detectable at the early stages of heart formation in the nascent myocardium, valves and coronary vasculature. The specific subtypes of macrophages present in the developing heart reflect the generation of hematopoietic progenitors in the yolk sac, aorta-gonad-mesonephros, fetal liver, and postnatal bone marrow. Ablation studies have demonstrated specific requirements for embryonic macrophages in valve remodeling, coronary and lymphatic vessel development, specialized conduction system maturation, and myocardial regeneration after neonatal injury. The developmental origins of macrophage lineages change over time, with embryonic lineages having more reparative and remodeling functions in comparison to the bone marrow derived myeloid lineages of adults. Here we review the contributions and functions of cardiac macrophages in the developing heart with potential regenerative and reparative implications for cardiovascular disease.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"156 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA binding proteins in cardiovascular development and disease. 心血管发育和疾病中的 RNA 结合蛋白
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-03-15 DOI: 10.1016/bs.ctdb.2024.01.007
Sunil K Verma, Muge N Kuyumcu-Martinez
{"title":"RNA binding proteins in cardiovascular development and disease.","authors":"Sunil K Verma, Muge N Kuyumcu-Martinez","doi":"10.1016/bs.ctdb.2024.01.007","DOIUrl":"10.1016/bs.ctdb.2024.01.007","url":null,"abstract":"<p><p>Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"156 ","pages":"51-119"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cardiac conduction system: History, development, and disease. 心脏传导系统:历史、发展和疾病。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-03-06 DOI: 10.1016/bs.ctdb.2024.02.006
Carissa Lee, Sidra Xu, Tahmina Samad, William R Goodyer, Alireza Raissadati, Paul Heinrich, Sean M Wu
{"title":"The cardiac conduction system: History, development, and disease.","authors":"Carissa Lee, Sidra Xu, Tahmina Samad, William R Goodyer, Alireza Raissadati, Paul Heinrich, Sean M Wu","doi":"10.1016/bs.ctdb.2024.02.006","DOIUrl":"10.1016/bs.ctdb.2024.02.006","url":null,"abstract":"<p><p>The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"156 ","pages":"157-200"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetics of cardiomyocyte polyploidy. 心肌细胞多倍体的遗传学。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-06 DOI: 10.1016/bs.ctdb.2024.01.008
Tyler Buddell, Alexandra L Purdy, Michaela Patterson
{"title":"The genetics of cardiomyocyte polyploidy.","authors":"Tyler Buddell, Alexandra L Purdy, Michaela Patterson","doi":"10.1016/bs.ctdb.2024.01.008","DOIUrl":"10.1016/bs.ctdb.2024.01.008","url":null,"abstract":"<p><p>The regulation of ploidy in cardiomyocytes is a complex and tightly regulated aspect of cardiac development and function. Cardiomyocyte ploidy can range from diploid (2N) to 8N or even 16N, and these states change during key stages of development and disease progression. Polyploidization has been associated with cellular hypertrophy to support normal growth of the heart, increased contractile capacity, and improved stress tolerance in the heart. Conversely, alterations to ploidy also occur during cardiac pathogenesis of diseases, such as ischemic and non-ischemic heart failure and arrhythmia. Therefore, understanding which genes control and modulate cardiomyocyte ploidy may provide mechanistic insight underlying cardiac growth, regeneration, and disease. This chapter summarizes the current knowledge regarding the genes involved in the regulation of cardiomyocyte ploidy. We discuss genes that have been directly tested for their role in cardiomyocyte polyploidization, as well as methodologies used to identify ploidy alterations. These genes encode cell cycle regulators, transcription factors, metabolic proteins, nuclear scaffolding, and components of the sarcomere, among others. The general physiological and pathological phenotypes in the heart associated with the genetic manipulations described, and how they coincide with the respective cardiomyocyte ploidy alterations, are further discussed in this chapter. In addition to being candidates for genetic-based therapies for various cardiac maladies, these genes and their functions provide insightful evidence regarding the purpose of widespread polyploidization in cardiomyocytes.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"156 ","pages":"245-295"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organizing activities of axial mesoderm. 轴突中胚层的组织活动
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-03-15 DOI: 10.1016/bs.ctdb.2024.02.007
Elizabeth Manning, Marysia Placzek
{"title":"Organizing activities of axial mesoderm.","authors":"Elizabeth Manning, Marysia Placzek","doi":"10.1016/bs.ctdb.2024.02.007","DOIUrl":"10.1016/bs.ctdb.2024.02.007","url":null,"abstract":"<p><p>For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"157 ","pages":"83-123"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of microenvironment on muscle stem cell function in health, adaptation, and disease. 微环境在健康、适应和疾病中对肌肉干细胞功能的作用
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-03-13 DOI: 10.1016/bs.ctdb.2024.02.002
Daniel Helzer, Pranav Kannan, Joseph C Reynolds, Devin E Gibbs, Rachelle H Crosbie
{"title":"Role of microenvironment on muscle stem cell function in health, adaptation, and disease.","authors":"Daniel Helzer, Pranav Kannan, Joseph C Reynolds, Devin E Gibbs, Rachelle H Crosbie","doi":"10.1016/bs.ctdb.2024.02.002","DOIUrl":"10.1016/bs.ctdb.2024.02.002","url":null,"abstract":"<p><p>The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"179-201"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The control of transitions along the main body axis. 控制沿主体轴线的过渡。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2023-12-06 DOI: 10.1016/bs.ctdb.2023.11.002
Anastasiia Lozovska, Artemis G Korovesi, Patricia Duarte, Ana Casaca, Tereza Assunção, Moises Mallo
{"title":"The control of transitions along the main body axis.","authors":"Anastasiia Lozovska, Artemis G Korovesi, Patricia Duarte, Ana Casaca, Tereza Assunção, Moises Mallo","doi":"10.1016/bs.ctdb.2023.11.002","DOIUrl":"10.1016/bs.ctdb.2023.11.002","url":null,"abstract":"<p><p>Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"272-308"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromesodermal specification during head-to-tail body axis formation. 头尾体轴形成过程中的神经胚层规范。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-03-19 DOI: 10.1016/bs.ctdb.2024.02.012
C Martins-Costa, V Wilson, A Binagui-Casas
{"title":"Neuromesodermal specification during head-to-tail body axis formation.","authors":"C Martins-Costa, V Wilson, A Binagui-Casas","doi":"10.1016/bs.ctdb.2024.02.012","DOIUrl":"10.1016/bs.ctdb.2024.02.012","url":null,"abstract":"<p><p>The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/β-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"232-271"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信