Current Topics in Developmental Biology最新文献

筛选
英文 中文
Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist. 小鼠胎儿性腺的减数分裂和维甲酸:一个意想不到的转折。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-10-29 DOI: 10.1016/bs.ctdb.2024.10.006
Giulia Perrotta, Diana Condrea, Norbert B Ghyselinck
{"title":"Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.","authors":"Giulia Perrotta, Diana Condrea, Norbert B Ghyselinck","doi":"10.1016/bs.ctdb.2024.10.006","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.10.006","url":null,"abstract":"<p><p>In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C. Thus, ATRA can no longer be considered as 'the' long-searched MIS. Furthermore, evidence indicates that CYP26B1 does not prevent meiosis by degrading ATRA in the fetal testis, but acts by degrading an unidentified MIS or synthesizing an equally unknown MPS. By emphasizing the necessity of genetic loss-of-function approaches to accurately delineate the roles of signaling molecules such ATRA in vivo, this chapter calls for a reevaluation of the mechanisms instructing and preventing meiosis initiation in the fetal ovary and testis, respectively. It highlights the need for further research into the molecular identities of the signals involved in these processes.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"59-88"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gamete activation for fertilization and seed development in flowering plants. 开花植物配子在受精和种子发育中的激活。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-11-13 DOI: 10.1016/bs.ctdb.2024.10.009
Wei Wang, Hanxian Xiong, Meng-Xiang Sun
{"title":"Gamete activation for fertilization and seed development in flowering plants.","authors":"Wei Wang, Hanxian Xiong, Meng-Xiang Sun","doi":"10.1016/bs.ctdb.2024.10.009","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.10.009","url":null,"abstract":"<p><p>Double fertilization is a defining feature of flowering plants, in which two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to trigger embryogenesis and endosperm development. Gamete activation before fertilization is essential for the success of fertilization, while gamete activation after fertilization is the prerequisite for embryo and endosperm development. The two phases of activation are an associated and continuous process. In this review, we focus on current understanding of gamete activation both before and after fertilization in flowering plants, summarize and discuss the detailed cellular and molecular mechanisms underlying gamete activation for fertilization or initiation of embryogenesis and endosperm development.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"1-31"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143781966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luteinizing hormone-induced changes in the structure of mammalian preovulatory follicles. 促黄体激素诱导的哺乳动物排卵前卵泡结构变化。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.1016/bs.ctdb.2024.10.011
Corie M Owen, Laurinda A Jaffe
{"title":"Luteinizing hormone-induced changes in the structure of mammalian preovulatory follicles.","authors":"Corie M Owen, Laurinda A Jaffe","doi":"10.1016/bs.ctdb.2024.10.011","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.10.011","url":null,"abstract":"<p><p>Ovulation of a mammalian oocyte from its follicle, which occurs in response to luteinizing hormone (LH), requires complex restructuring of the ∼20 layers of surrounding somatic cells. This chapter describes the cellular architecture of preovulatory follicles, the localization of the receptors for LH, and the LH-induced changes in follicular structure, focusing on mice and other small mammals. The multiple interrelated processes that result in ovulation include breakdown of existing extracellular matrix, generation of new extracellular matrix, thinning of the follicular apex where the oocyte will be released, invagination of the follicular surface, and responses of the vascular system to support these dynamic changes. However, much remains unknown about how these events function together to release a fertilizable egg.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"259-282"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mammalian egg's zona pellucida, fertilization, and fertility. 哺乳动物卵子的透明带、受精和生育。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-02-05 DOI: 10.1016/bs.ctdb.2024.10.008
Eveline S Litscher, Paul M Wassarman
{"title":"The mammalian egg's zona pellucida, fertilization, and fertility.","authors":"Eveline S Litscher, Paul M Wassarman","doi":"10.1016/bs.ctdb.2024.10.008","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.10.008","url":null,"abstract":"<p><p>The zona pellucida (ZP) is a relatively thick extracellular matrix (ECM) that surrounds all mammalian eggs and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is a semi-permeable, viscous ECM that consists of three or four glycosylated proteins, called ZP1-4, that differ from proteoglycans and proteins of somatic cell ECM. Mammalian ZP proteins are encoded by single-copy genes on different chromosomes and synthesized and secreted by growing oocytes arrested in meiosis. Secreted ZP proteins assemble in the extracellular space into long fibrils that are crosslinked polymers of ZP proteins and exhibit a structural repeat. Several regions of nascent ZP proteins, the signal-sequence, ZP domain, internal and external hydrophobic patches, transmembrane domain, and consensus furin cleavage-site regulate secretion and assembly of the proteins. The ZP domain is required for assembly of ZP fibrils, as well as for assembly of other kinds of ZP domain-containing proteins. ZP proteins adopt immunoglobulin (Ig)-like folds that resemble C- and V-type Ig-like domains, but represent new immunoglobulin-superfamily subtype structures. Interference with synthesis, processing, or secretion of ZP proteins by either gene-targeting in mice or mutations in human ZP genes can result in failure to assemble a ZP and female infertility. ZP2 and ZP3 must be present to assemble a ZP during oocyte growth and both serve as receptors for binding of free-swimming sperm to ovulated eggs. Acrosome-reacted sperm bind to ZP2 polypeptide by inner-acrosomal membrane and acrosome-intact sperm bind to ZP3 oligosaccharides by plasma membrane overlying the sperm head. Binding of acrosome-intact sperm to ZP3 induces them to undergo cellular exocytosis, the acrosome reaction. Only acrosome-reacted sperm can penetrate the ZP, bind to, and then fuse with the egg's plasma membrane to produce a zygote. Following sperm-egg fusion (fertilization) the ZP undergoes structural and functional changes (zona reaction) induced by cortical granule components (cortical reaction) deposited into the ZP. The latter include zinc and ovastacin, a metalloendoprotease that cleaves ZP2 near its amino-terminus and hardens the egg's ZP. The changes prevent penetration of bound sperm through and binding of supernumerary sperm to the ZP of fertilized eggs as part of a secondary or slow block to polyspermy. Therefore, ZP proteins act as structural proteins and sperm receptors, and help to prevent fertilization by more than one sperm. Here we review some of this information and provide details about several key features of ZP proteins, ZP matrix, and mammalian fertilization.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"207-258"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoid signaling in pancreas development, islet function, and disease. 胰腺发育、胰岛功能和疾病中的视黄醇信号转导
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.1016/bs.ctdb.2024.10.007
Manuj Bandral, Lori Sussel, David S Lorberbaum
{"title":"Retinoid signaling in pancreas development, islet function, and disease.","authors":"Manuj Bandral, Lori Sussel, David S Lorberbaum","doi":"10.1016/bs.ctdb.2024.10.007","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.10.007","url":null,"abstract":"<p><p>All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function. ATRA concentration must be carefully regulated during the derivation of islet-like cells from human pluripotent stem cells (hPSCs) to optimize the expression of key pancreatic transcription factors while mitigating adverse and unwanted cell-types in these cultures. The ATRA pathway is integral to the pancreas and here we will present selected studies from decades of research that has laid the essential groundwork for ongoing projects dedicated to unraveling the complexities of ATRA signaling in the pancreas.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"297-318"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoskeletal dynamics of gamete nuclear migration in flowering plants, animals, and yeast. 开花植物、动物和酵母配子核迁移的细胞骨架动力学。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-12-03 DOI: 10.1016/bs.ctdb.2024.10.010
Yilin Zhang, Tomokazu Kawashima
{"title":"Cytoskeletal dynamics of gamete nuclear migration in flowering plants, animals, and yeast.","authors":"Yilin Zhang, Tomokazu Kawashima","doi":"10.1016/bs.ctdb.2024.10.010","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.10.010","url":null,"abstract":"<p><p>Gamete nuclear migration is a critical process during fertilization in flowering plants, yet its molecular mechanisms remain poorly understood. Recent studies have highlighted the essential role of cytoskeletal elements, particularly F-actin, in directing sperm nuclear migration, which differ from the microtubule-driven migration in animals. We summarize the process of sperm nuclear migration in plants and the involvement of Class XI myosin XI-G in Arabidopsis, along with the ROP8-SCAR2 pathway's ARP2/3-independent mechanism for F-actin nucleation. We also provide a comparative overview of examples from sea urchins, C. elegans, mice and yeast contrasting these mechanisms with those in plants. Finally, we outline possible future research directions related to sperm nuclear migration in plants. This review highlights the need for further exploration of pre- and post-fertilization processes, emphasizing their importance in plant cytoskeleton biology and the coordinated development of seeds.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"33-53"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143781954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fertilization and the fast block to polyspermy in the African Clawed Frog, Xenopus laevis: A historical perspective. 非洲爪蟾(Xenopus laevis)的受精和对多精子的快速阻碍:一个历史视角。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-02-03 DOI: 10.1016/bs.ctdb.2024.12.003
Kayla M Komondor, Anne E Carlson
{"title":"Fertilization and the fast block to polyspermy in the African Clawed Frog, Xenopus laevis: A historical perspective.","authors":"Kayla M Komondor, Anne E Carlson","doi":"10.1016/bs.ctdb.2024.12.003","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.12.003","url":null,"abstract":"<p><p>The African clawed frog, Xenopus laevis, has long been a model organism for studying fertilization due to its large and abundant eggs that are easily manipulated and rapidly undergo embryonic development. Research on this model organism has provided significant insights into the mechanisms that ensure successful fertilization, including the prevention of polyspermy. Polyspermy, the fertilization of an egg by multiple sperm, poses a significant threat to successful embryonic development in most sexually reproducing animals. To counter this, eggs have evolved mechanisms known as polyspermy blocks, which prevent additional sperm from entering once fertilization has occurred. This review focuses on fertilization research in general, and specifically on studies of the fast block to polyspermy in X. laevis. We trace key discoveries and experimental advancements that have shaped our current understanding. Indeed, studies on X. laevis have revealed that fertilization triggers a depolarization of the egg membrane mediated by an efflux of Cl<sup>-</sup> through the Ca<sup>2+</sup>-activated Cl<sup>-</sup> channel TMEM16A, effectively preventing polyspermy. Despite these advances, several questions remain regarding the precise molecular interactions and signaling pathways involved. Continued research on X. laevis promises to uncover further details about the earliest events in embryogenesis and the voltage-dependent mechanisms of fertilization, offering broader insights into reproductive biology across species.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"143-163"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143781956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoic acid homeostasis and disease. 视黄酸平衡与疾病
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-12-06 DOI: 10.1016/bs.ctdb.2024.11.001
Maureen A Kane
{"title":"Retinoic acid homeostasis and disease.","authors":"Maureen A Kane","doi":"10.1016/bs.ctdb.2024.11.001","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.11.001","url":null,"abstract":"<p><p>Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences. Furthermore, the associations are discussed between ATRA dysregulation and several diseases, including various genetic disorders, cancer, endometriosis, and heart failure, underscoring the role of retinoid-binding proteins like RBP1 in these conditions. The potential for gene-environment interactions in retinoid metabolism is also examined, suggesting that dietary factors may exacerbate genetic predispositions to ATRA-related pathologies. Methodological advancements in quantifying ATRA and its metabolites are reviewed, alongside the challenges inherent in studying retinoid dynamics. Future research directions are proposed to further elucidate the role of ATRA in health and disease, with the aim of identifying therapeutic targets for conditions linked to retinoid signaling dysregulation.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"201-233"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple roles for retinoid signaling in craniofacial development. 类视黄醛信号在颅面发育中的多重作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-10-07 DOI: 10.1016/bs.ctdb.2024.09.002
Masahiro Nakamura, Lisa L Sandell
{"title":"Multiple roles for retinoid signaling in craniofacial development.","authors":"Masahiro Nakamura, Lisa L Sandell","doi":"10.1016/bs.ctdb.2024.09.002","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2024.09.002","url":null,"abstract":"<p><p>Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown. The spatial distribution of RA signaling changes with progressive development, corresponding to a multiplicity of craniofacial developmental processes that are regulated by RA. One important role of RA signaling occurs in the hindbrain. There RA contributes to specification of the anterior-posterior (AP) axis of the developing CNS and to the neural crest cells (NCC) which form the bones and nerves of the face and pharyngeal region. In the optic vesicles and frontonasal process RA orchestrates development of the midface, eyes, and nasal airway. Additional roles for RA in craniofacial development include regulation of submandibular salivary gland development and maintaining patency in the sutures of the cranial vault.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"33-57"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. 雌雄同体海鞘和线虫的受精机制:哺乳动物和植物的共同机制。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-03-05 DOI: 10.1016/bs.ctdb.2025.01.010
Hitoshi Sawada, Takako Saito, Yoshihiro Shimada, Hitoshi Nishimura
{"title":"Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants.","authors":"Hitoshi Sawada, Takako Saito, Yoshihiro Shimada, Hitoshi Nishimura","doi":"10.1016/bs.ctdb.2025.01.010","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2025.01.010","url":null,"abstract":"<p><p>Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"55-114"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143781961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信