Current Topics in Developmental Biology最新文献

筛选
英文 中文
Computational approaches for mechanobiology in cardiovascular development and diseases. 心血管发育和疾病中机械生物学的计算方法。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-05 DOI: 10.1016/bs.ctdb.2024.01.006
Aaron L Brown, Zachary A Sexton, Zinan Hu, Weiguang Yang, Alison L Marsden
{"title":"Computational approaches for mechanobiology in cardiovascular development and diseases.","authors":"Aaron L Brown, Zachary A Sexton, Zinan Hu, Weiguang Yang, Alison L Marsden","doi":"10.1016/bs.ctdb.2024.01.006","DOIUrl":"10.1016/bs.ctdb.2024.01.006","url":null,"abstract":"<p><p>The cardiovascular development in vertebrates evolves in response to genetic and mechanical cues. The dynamic interplay among mechanics, cell biology, and anatomy continually shapes the hydraulic networks, characterized by complex, non-linear changes in anatomical structure and blood flow dynamics. To better understand this interplay, a diverse set of molecular and computational tools has been used to comprehensively study cardiovascular mechanobiology. With the continual advancement of computational capacity and numerical techniques, cardiovascular simulation is increasingly vital in both basic science research for understanding developmental mechanisms and disease etiologies, as well as in clinical studies aimed at enhancing treatment outcomes. This review provides an overview of computational cardiovascular modeling. Beginning with the fundamental concepts of computational cardiovascular modeling, it navigates through the applications of computational modeling in investigating mechanobiology during cardiac development. Second, the article illustrates the utility of computational hemodynamic modeling in the context of treatment planning for congenital heart diseases. It then delves into the predictive potential of computational models for elucidating tissue growth and remodeling processes. In closing, we outline prevailing challenges and future prospects, underscoring the transformative impact of computational cardiovascular modeling in reshaping cardiovascular science and clinical practice.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"156 ","pages":"19-50"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. 肺泡我们目前对肺部气体交换单元的构造和修复方式的了解。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-03-06 DOI: 10.1016/bs.ctdb.2024.01.002
Kuan Zhang, Erica Yao, Thin Aung, Pao-Tien Chuang
{"title":"The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired.","authors":"Kuan Zhang, Erica Yao, Thin Aung, Pao-Tien Chuang","doi":"10.1016/bs.ctdb.2024.01.002","DOIUrl":"10.1016/bs.ctdb.2024.01.002","url":null,"abstract":"<p><p>The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"59-129"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The extracellular matrix niche of muscle stem cells. 肌肉干细胞的细胞外基质生态位
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-28 DOI: 10.1016/bs.ctdb.2024.01.021
Eleni Chrysostomou, Philippos Mourikis
{"title":"The extracellular matrix niche of muscle stem cells.","authors":"Eleni Chrysostomou, Philippos Mourikis","doi":"10.1016/bs.ctdb.2024.01.021","DOIUrl":"10.1016/bs.ctdb.2024.01.021","url":null,"abstract":"<p><p>Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical \"pockets\" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"123-150"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From signalling to form: the coordination of neural tube patterning. 从信号到形态:神经管形态的协调。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2023-12-08 DOI: 10.1016/bs.ctdb.2023.11.004
Thomas J R Frith, James Briscoe, Giulia L M Boezio
{"title":"From signalling to form: the coordination of neural tube patterning.","authors":"Thomas J R Frith, James Briscoe, Giulia L M Boezio","doi":"10.1016/bs.ctdb.2023.11.004","DOIUrl":"10.1016/bs.ctdb.2023.11.004","url":null,"abstract":"<p><p>The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"168-231"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic integration of signaling from the regenerative environment. 再生环境信号的表观遗传整合。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-19 DOI: 10.1016/bs.ctdb.2024.02.003
Perla Geara, F Jeffrey Dilworth
{"title":"Epigenetic integration of signaling from the regenerative environment.","authors":"Perla Geara, F Jeffrey Dilworth","doi":"10.1016/bs.ctdb.2024.02.003","DOIUrl":"10.1016/bs.ctdb.2024.02.003","url":null,"abstract":"<p><p>Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"341-374"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. 横纹肌肉瘤和肌肉萎缩症中的肌肉干细胞功能障碍。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-19 DOI: 10.1016/bs.ctdb.2024.01.019
Rebecca Robertson, Shulei Li, Romina L Filippelli, Natasha C Chang
{"title":"Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy.","authors":"Rebecca Robertson, Shulei Li, Romina L Filippelli, Natasha C Chang","doi":"10.1016/bs.ctdb.2024.01.019","DOIUrl":"10.1016/bs.ctdb.2024.01.019","url":null,"abstract":"<p><p>Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"83-121"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system. 使发育中的组织模式化的细胞行为:脊椎动物神经系统的案例。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2023-12-26 DOI: 10.1016/bs.ctdb.2023.11.003
Mauricio Rocha-Martins
{"title":"Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system.","authors":"Mauricio Rocha-Martins","doi":"10.1016/bs.ctdb.2023.11.003","DOIUrl":"10.1016/bs.ctdb.2023.11.003","url":null,"abstract":"<p><p>Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"30-58"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of a left-right symmetric body plan in vertebrate embryos. 脊椎动物胚胎左右对称身体结构的出现
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-05 DOI: 10.1016/bs.ctdb.2024.01.003
Siddhartha Bardhan, Nandini Bhargava, Swarali Dighe, Neha Vats, Sundar Ram Naganathan
{"title":"Emergence of a left-right symmetric body plan in vertebrate embryos.","authors":"Siddhartha Bardhan, Nandini Bhargava, Swarali Dighe, Neha Vats, Sundar Ram Naganathan","doi":"10.1016/bs.ctdb.2024.01.003","DOIUrl":"10.1016/bs.ctdb.2024.01.003","url":null,"abstract":"<p><p>External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"310-342"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of patterns in the paraxial mesoderm. 副中胚层模式的生成
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2023-11-30 DOI: 10.1016/bs.ctdb.2023.11.001
Cristina Loureiro, Olivier F Venzin, Andrew C Oates
{"title":"Generation of patterns in the paraxial mesoderm.","authors":"Cristina Loureiro, Olivier F Venzin, Andrew C Oates","doi":"10.1016/bs.ctdb.2023.11.001","DOIUrl":"10.1016/bs.ctdb.2023.11.001","url":null,"abstract":"<p><p>The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called \"Clock and Wavefront\" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the \"Clock and Wavefront\" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the \"Clock and Wavefront\" model into three elements, \"Clock\", \"Wavefront\" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"159 ","pages":"372-405"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian timing of satellite cell function and muscle regeneration. 卫星细胞功能和肌肉再生的昼夜节律。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI: 10.1016/bs.ctdb.2024.01.017
Pei Zhu, Clara B Peek
{"title":"Circadian timing of satellite cell function and muscle regeneration.","authors":"Pei Zhu, Clara B Peek","doi":"10.1016/bs.ctdb.2024.01.017","DOIUrl":"10.1016/bs.ctdb.2024.01.017","url":null,"abstract":"<p><p>Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"307-339"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信