{"title":"Cytoskeletal dynamics of gamete nuclear migration in flowering plants, animals, and yeast.","authors":"Yilin Zhang, Tomokazu Kawashima","doi":"10.1016/bs.ctdb.2024.10.010","DOIUrl":null,"url":null,"abstract":"<p><p>Gamete nuclear migration is a critical process during fertilization in flowering plants, yet its molecular mechanisms remain poorly understood. Recent studies have highlighted the essential role of cytoskeletal elements, particularly F-actin, in directing sperm nuclear migration, which differ from the microtubule-driven migration in animals. We summarize the process of sperm nuclear migration in plants and the involvement of Class XI myosin XI-G in Arabidopsis, along with the ROP8-SCAR2 pathway's ARP2/3-independent mechanism for F-actin nucleation. We also provide a comparative overview of examples from sea urchins, C. elegans, mice and yeast contrasting these mechanisms with those in plants. Finally, we outline possible future research directions related to sperm nuclear migration in plants. This review highlights the need for further exploration of pre- and post-fertilization processes, emphasizing their importance in plant cytoskeleton biology and the coordinated development of seeds.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"33-53"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.10.010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Gamete nuclear migration is a critical process during fertilization in flowering plants, yet its molecular mechanisms remain poorly understood. Recent studies have highlighted the essential role of cytoskeletal elements, particularly F-actin, in directing sperm nuclear migration, which differ from the microtubule-driven migration in animals. We summarize the process of sperm nuclear migration in plants and the involvement of Class XI myosin XI-G in Arabidopsis, along with the ROP8-SCAR2 pathway's ARP2/3-independent mechanism for F-actin nucleation. We also provide a comparative overview of examples from sea urchins, C. elegans, mice and yeast contrasting these mechanisms with those in plants. Finally, we outline possible future research directions related to sperm nuclear migration in plants. This review highlights the need for further exploration of pre- and post-fertilization processes, emphasizing their importance in plant cytoskeleton biology and the coordinated development of seeds.