Current Topics in Developmental Biology最新文献

筛选
英文 中文
Gene-environment interactions in birth defect etiology: Challenges and opportunities. 出生缺陷病因学中基因与环境的相互作用:挑战与机遇。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-11-14 DOI: 10.1016/bs.ctdb.2022.10.001
Robert J Lipinski, Robert S Krauss
{"title":"Gene-environment interactions in birth defect etiology: Challenges and opportunities.","authors":"Robert J Lipinski, Robert S Krauss","doi":"10.1016/bs.ctdb.2022.10.001","DOIUrl":"10.1016/bs.ctdb.2022.10.001","url":null,"abstract":"<p><p>Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"152 ","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942595/pdf/nihms-1871554.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9623978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meiotic crossover interference: Methods of analysis and mechanisms of action. 减数分裂交叉干扰:分析方法和作用机制
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-08-24 DOI: 10.1016/bs.ctdb.2022.04.006
Yu-Chien Chuang, Gerald R Smith
{"title":"Meiotic crossover interference: Methods of analysis and mechanisms of action.","authors":"Yu-Chien Chuang, Gerald R Smith","doi":"10.1016/bs.ctdb.2022.04.006","DOIUrl":"10.1016/bs.ctdb.2022.04.006","url":null,"abstract":"<p><p>Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"217-244"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9209619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro spermatogenesis: Why meiotic checkpoints matter. 体外精子发生:减数分裂检查点为何重要
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-06-09 DOI: 10.1016/bs.ctdb.2022.04.009
Qijing Lei, Ans M M van Pelt, Geert Hamer
{"title":"In vitro spermatogenesis: Why meiotic checkpoints matter.","authors":"Qijing Lei, Ans M M van Pelt, Geert Hamer","doi":"10.1016/bs.ctdb.2022.04.009","DOIUrl":"10.1016/bs.ctdb.2022.04.009","url":null,"abstract":"<p><p>Successful in vitro spermatogenesis would generate functional haploid spermatids, and thus, form the basis for novel approaches to treat patients with impaired spermatogenesis or develop alternative strategies for male fertility preservation. Several culture strategies, including cell cultures using various stem cells and ex vivo cultures of testicular tissue, have been investigated to recapitulate spermatogenesis in vitro. Although some studies have described complete meiosis and subsequent generation of functional spermatids, key meiotic events, such as chromosome synapsis and homologous recombination required for successful meiosis and faithful in vitro-derived gametes, are often not reported. To guarantee the generation of in vitro-formed spermatids without persistent DNA double-strand breaks (DSBs) and chromosomal aberrations, criteria to evaluate whether all meiotic events are completely executed in vitro need to be established. In vivo, these meiotic events are strictly monitored by meiotic checkpoints that eliminate aberrant spermatocytes. To establish criteria to evaluate in vitro meiosis, we review the meiotic events and checkpoints that have been investigated by previous in vitro spermatogenesis studies. We found that, although major meiotic events such as initiation of DSBs and recombination, complete chromosome synapsis, and XY-body formation can be achieved in vitro, crossover formation, chiasmata frequency, and checkpoint mechanisms have been mostly ignored. In addition, complete spermiogenesis, during which round spermatids differentiate into elongated spermatids, has not been achieved in vitro by various cell culture strategies. Finally, we discuss the implications of meiotic checkpoints for in vitro spermatogenesis protocols and future clinical use.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"345-369"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Wnt signaling and planar cell polarity in left-right asymmetry. Wnt信号和平面细胞极性在左右不对称中的作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.01.008
Katsura Minegishi, Xiaorei Sai, Hiroshi Hamada
{"title":"Role of Wnt signaling and planar cell polarity in left-right asymmetry.","authors":"Katsura Minegishi,&nbsp;Xiaorei Sai,&nbsp;Hiroshi Hamada","doi":"10.1016/bs.ctdb.2023.01.008","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.01.008","url":null,"abstract":"<p><p>Wnt signaling plays essential roles in multiple steps of left-right (L-R) determination in development. First, canonical Wnt signaling is required to form the node, where L-R symmetry breaking takes place. Secondly, planar cell polarity (PCP) driven by non-canonical Wnt signaling polarizes node cells along the anterio-posterior (A-P) axis and provides the tilt of rotating cilia at the node, which generate the leftward fluid flow. Thus, reciprocal expression of Wnt5a/5b and their inhibitors Sfrp1, 2, 5 generates a gradient of Wnt5 activity along the embryo's anterior-posterior (A-P) axis. This polarizes cells at the node, by placing PCP core proteins on the anterior or posterior side of each node cell. Polarized PCP proteins subsequently induce asymmetric organization of microtubules along the A-P axis, which is thought to push the centrally localized basal body toward the posterior side of a node cell. Motile cilia that extend from the posteriorly-shifted basal body is tilted toward the posterior side of the embryo. Thirdly, canonical-Wnt signaling regulates the level and expansion of Nodal activity and establishes L-R asymmetric Nodal activity at the node, the first molecular asymmetry in the mouse embryo. Overall, both canonical and non-canonical Wnt signalings are essential for L-R symmetry breaking.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"181-193"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9249892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wnt signaling in whole-body regeneration. Wnt信号在全身再生中的作用。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.01.007
Christian P Petersen
{"title":"Wnt signaling in whole-body regeneration.","authors":"Christian P Petersen","doi":"10.1016/bs.ctdb.2023.01.007","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.01.007","url":null,"abstract":"<p><p>Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"153 ","pages":"347-380"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9256029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The complex relationship of Wnt-signaling pathways and cilia. wnt信号通路与纤毛的复杂关系。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2023-10-17 DOI: 10.1016/bs.ctdb.2023.09.002
Linh T Vuong, Marek Mlodzik
{"title":"The complex relationship of Wnt-signaling pathways and cilia.","authors":"Linh T Vuong, Marek Mlodzik","doi":"10.1016/bs.ctdb.2023.09.002","DOIUrl":"10.1016/bs.ctdb.2023.09.002","url":null,"abstract":"<p><p>Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"155 ","pages":"95-125"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unwinding during stressful times: Mechanisms of helicases in meiotic recombination. 在应激时解旋:减数分裂重组中螺旋酶的作用机制
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-07-18 DOI: 10.1016/bs.ctdb.2022.06.004
Magdalena Firlej, John R Weir
{"title":"Unwinding during stressful times: Mechanisms of helicases in meiotic recombination.","authors":"Magdalena Firlej, John R Weir","doi":"10.1016/bs.ctdb.2022.06.004","DOIUrl":"10.1016/bs.ctdb.2022.06.004","url":null,"abstract":"<p><p>Successful meiosis I requires that homologous chromosomes be correctly linked before they are segregated. In most organisms this physical linkage is achieved through the generation of crossovers between the homologs. Meiotic recombination co-opts and modifies the canonical homologous recombination pathway to successfully generate crossovers One of the central components of this pathway are a number of conserved DNA helicases. Helicases couple nucleic acid binding to nucleotide hydrolysis and use this activity to modify DNA or protein-DNA substrates. During meiosis I it is necessary for the cell to modulate the canonical DNA repair pathways in order to facilitate the generation of interhomolog crossovers. Many of these meiotic modulations take place in pathways involving DNA helicases, or with a meiosis specific helicase. This short review explores what is currently understood about these helicases, their interaction partners, and the role of regulatory modifications during meiosis I. We focus in particular on the molecular structure and mechanisms of these helicases.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"191-215"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10584875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PCH-2 and meiotic HORMADs: A module for evolutionary innovation in meiosis? PCH-2和减数分裂HORMADs:减数分裂中的进化创新模块?
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2022-07-28 DOI: 10.1016/bs.ctdb.2022.07.001
Needhi Bhalla
{"title":"PCH-2 and meiotic HORMADs: A module for evolutionary innovation in meiosis?","authors":"Needhi Bhalla","doi":"10.1016/bs.ctdb.2022.07.001","DOIUrl":"10.1016/bs.ctdb.2022.07.001","url":null,"abstract":"<p><p>Sexual reproduction and the specialized cell division it relies upon, meiosis, are biological processes that present an incredible degree of both evolutionary conservation and divergence. One clear example of this paradox is the role of the evolutionarily ancient PCH-2/HORMAD module during meiosis. On one hand, the complex, and sometimes disparate, meiotic defects observed when PCH-2 and/or the meiotic HORMADS are mutated in different model systems have prevented a straightforward characterization of their conserved functions. On the other hand, these functional variations demonstrate the impressive molecular rewiring that accompanies evolution of the meiotic processes these factors are involved in. While the defects observed in pch-2 mutants appear to vary in different systems, in this review, I argue that PCH-2 has a conserved meiotic function: to coordinate meiotic recombination with synapsis to ensure an appropriate number and distribution of crossovers. Further, given the dramatic variation in how the events of recombination and synapsis are themselves regulated in different model systems, the mechanistic differences in PCH-2 and meiotic HORMAD function make biological sense when viewed as species-specific elaborations layered onto this fundamental, conserved role.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"317-344"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. 患者干细胞衍生的体外疾病模型用于开发视网膜纤毛病的新疗法。
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 Epub Date: 2023-11-04 DOI: 10.1016/bs.ctdb.2023.09.003
Kamil Kruczek, Anand Swaroop
{"title":"Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies.","authors":"Kamil Kruczek, Anand Swaroop","doi":"10.1016/bs.ctdb.2023.09.003","DOIUrl":"10.1016/bs.ctdb.2023.09.003","url":null,"abstract":"<p><p>Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"155 ","pages":"127-163"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? 电池极性和挤压:如何极化挤压和挤压非极化电池?
2区 生物学
Current Topics in Developmental Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctdb.2023.02.010
Ralitza Staneva, Romain Levayer
{"title":"Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells?","authors":"Ralitza Staneva,&nbsp;Romain Levayer","doi":"10.1016/bs.ctdb.2023.02.010","DOIUrl":"https://doi.org/10.1016/bs.ctdb.2023.02.010","url":null,"abstract":"<p><p>The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"154 ","pages":"131-167"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信