The role of metabolism in cardiac development.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-09 DOI:10.1016/bs.ctdb.2024.01.005
Haruko Nakano, Atsushi Nakano
{"title":"The role of metabolism in cardiac development.","authors":"Haruko Nakano, Atsushi Nakano","doi":"10.1016/bs.ctdb.2024.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"156 ","pages":"201-243"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.01.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.

新陈代谢在心脏发育中的作用
新陈代谢是维持生命的基本过程。尤其是心脏,它是一个能量需求很高的器官,对其能量底物的研究已有一个多世纪的历史。近年来,人们越来越有兴趣了解新陈代谢在多能干细胞早期分化和癌症研究中的作用。研究发现,糖酵解和三羧酸循环的代谢中间产物是细胞内信号转导的辅助因子,在调节细胞行为方面起着至关重要的作用。线粒体作为新陈代谢的中心枢纽,其动态调控也受到了深入研究。胎儿的代谢环境与母体的代谢状况密切相关,母亲的营养和代谢健康对胎儿的发育影响重大。例如,众所周知,母体糖尿病会增加胎儿心脏和神经系统畸形的风险。另一个值得注意的例子是,孕妇补充叶酸后,神经管畸形的风险会降低。这些例子凸显了母体代谢环境对胎儿器官发育程序的深远影响。因此,深入了解胎儿器官发育过程中的代谢环境对于加深我们对正常器官发育的理解至关重要。本综述旨在总结在胚胎发育过程中环境和代谢因素的历史认知基础上的最新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信