{"title":"维生素A在眼睛的供应和视觉周期的建立。","authors":"Sepalika Bandara, Johannes von Lintig","doi":"10.1016/bs.ctdb.2024.09.003","DOIUrl":null,"url":null,"abstract":"<p><p>Animals perceiving light through visual pigments have evolved pathways for absorbing, transporting, and metabolizing the precursors essential for synthesis of their retinylidene chromophores. Over the past decades, our understanding of this metabolism has grown significantly. Through genetic manipulation, researchers gained insights into the metabolic complexity of the pathways mediating the flow of chromophore precursors throughout the body, and their enrichment within the eyes. This exploration has identified transport proteins and metabolizing enzymes for these essential lipids and has revealed some of the fundamental regulatory mechanisms governing this process. What emerges is a complex framework at play that maintains ocular retinoid homeostasis and functions. This review summarizes the recent advancements and highlights future research directions that may deepen our understanding of this complex metabolism.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"161 ","pages":"319-348"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin A supply in the eye and establishment of the visual cycle.\",\"authors\":\"Sepalika Bandara, Johannes von Lintig\",\"doi\":\"10.1016/bs.ctdb.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animals perceiving light through visual pigments have evolved pathways for absorbing, transporting, and metabolizing the precursors essential for synthesis of their retinylidene chromophores. Over the past decades, our understanding of this metabolism has grown significantly. Through genetic manipulation, researchers gained insights into the metabolic complexity of the pathways mediating the flow of chromophore precursors throughout the body, and their enrichment within the eyes. This exploration has identified transport proteins and metabolizing enzymes for these essential lipids and has revealed some of the fundamental regulatory mechanisms governing this process. What emerges is a complex framework at play that maintains ocular retinoid homeostasis and functions. This review summarizes the recent advancements and highlights future research directions that may deepen our understanding of this complex metabolism.</p>\",\"PeriodicalId\":55191,\"journal\":{\"name\":\"Current Topics in Developmental Biology\",\"volume\":\"161 \",\"pages\":\"319-348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics in Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctdb.2024.09.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.09.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Vitamin A supply in the eye and establishment of the visual cycle.
Animals perceiving light through visual pigments have evolved pathways for absorbing, transporting, and metabolizing the precursors essential for synthesis of their retinylidene chromophores. Over the past decades, our understanding of this metabolism has grown significantly. Through genetic manipulation, researchers gained insights into the metabolic complexity of the pathways mediating the flow of chromophore precursors throughout the body, and their enrichment within the eyes. This exploration has identified transport proteins and metabolizing enzymes for these essential lipids and has revealed some of the fundamental regulatory mechanisms governing this process. What emerges is a complex framework at play that maintains ocular retinoid homeostasis and functions. This review summarizes the recent advancements and highlights future research directions that may deepen our understanding of this complex metabolism.