Human kidney organoids for modeling the development of different diseases.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2025-02-06 DOI:10.1016/bs.ctdb.2024.12.001
Elena Ceccotti, Armina Semnani, Benedetta Bussolati, Stefania Bruno
{"title":"Human kidney organoids for modeling the development of different diseases.","authors":"Elena Ceccotti, Armina Semnani, Benedetta Bussolati, Stefania Bruno","doi":"10.1016/bs.ctdb.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing incidence of kidney diseases has highlighted the need for in vitro experimental models to mimic disease development and to test new therapeutic approaches. Traditional two-dimensional in vitro experimental models are not fully able to recapitulate renal diseases. Instead, kidney organoids represent three-dimensional models that better mimic the human organ from both structural and functional points of view. Human pluripotent stem cells (PSCs), both embryonic and induced, are ideal sources for generating renal organoids. These organoids contain all renal cell types and the protocols to differentiate PSCs into renal organoids consist of three different stages that recapitulate embryonic development: mesodermal induction, nephron progenitor formation, and nephron differentiation. Recently it has been establish a renal organoid model where collecting ducts are also present. In this case, the presence of ureteric bud progenitor cells is essential. Renal organoids are particularly useful for studying genetic diseases, by introducing the specific mutations in PSCs by genome editing or generating organoids from patient-derived PSCs. Moreover, renal organoids represent promising models in toxicology studies and testing new therapeutic approaches. Renal organoids can be established also from adult stem cells. This type of organoid, named tubuloid, is composed only of epithelial cells and recapitulates the tissue repair process. The tubuloids can be generated from adult stem or progenitor cells, obtained from renal biopsies or urine, and are promising in vitro models for studying tubular functions, diseases, and regeneration. Tubuloids can be derived from patients and permit the study of genetic diseases, performing personalized drug screening and modeling renal pathologies.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"163 ","pages":"364-393"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.12.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing incidence of kidney diseases has highlighted the need for in vitro experimental models to mimic disease development and to test new therapeutic approaches. Traditional two-dimensional in vitro experimental models are not fully able to recapitulate renal diseases. Instead, kidney organoids represent three-dimensional models that better mimic the human organ from both structural and functional points of view. Human pluripotent stem cells (PSCs), both embryonic and induced, are ideal sources for generating renal organoids. These organoids contain all renal cell types and the protocols to differentiate PSCs into renal organoids consist of three different stages that recapitulate embryonic development: mesodermal induction, nephron progenitor formation, and nephron differentiation. Recently it has been establish a renal organoid model where collecting ducts are also present. In this case, the presence of ureteric bud progenitor cells is essential. Renal organoids are particularly useful for studying genetic diseases, by introducing the specific mutations in PSCs by genome editing or generating organoids from patient-derived PSCs. Moreover, renal organoids represent promising models in toxicology studies and testing new therapeutic approaches. Renal organoids can be established also from adult stem cells. This type of organoid, named tubuloid, is composed only of epithelial cells and recapitulates the tissue repair process. The tubuloids can be generated from adult stem or progenitor cells, obtained from renal biopsies or urine, and are promising in vitro models for studying tubular functions, diseases, and regeneration. Tubuloids can be derived from patients and permit the study of genetic diseases, performing personalized drug screening and modeling renal pathologies.

人类肾脏类器官用于模拟不同疾病的发展。
肾脏疾病的发病率不断增加,强调需要体外实验模型来模拟疾病的发展和测试新的治疗方法。传统的二维体外实验模型不能完全概括肾脏疾病。相反,肾类器官代表三维模型,从结构和功能的角度更好地模仿人体器官。人类多能干细胞(PSCs),无论是胚胎干细胞还是诱导干细胞,都是生成肾类器官的理想来源。这些类器官包含所有肾细胞类型,将PSCs分化为肾类器官的方案包括概括胚胎发育的三个不同阶段:中胚层诱导、肾元祖形成和肾元分化。最近已经建立了一个肾类器官模型,其中收集管也存在。在这种情况下,输尿管芽祖细胞的存在是必不可少的。通过基因组编辑在PSCs中引入特定突变或从患者来源的PSCs中生成类器官,肾类器官对研究遗传疾病特别有用。此外,肾类器官在毒理学研究和测试新的治疗方法中代表了有希望的模型。肾类器官也可以由成体干细胞建立。这种类型的类器官,被称为管状体,仅由上皮细胞组成,并概括了组织修复过程。小管可以从肾活检或尿液中获得的成体干细胞或祖细胞中生成,是研究小管功能、疾病和再生的体外模型。小管可以从患者身上提取,并允许遗传疾病的研究,进行个性化的药物筛选和肾脏病理建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信