{"title":"A note on diffusion limits for stochastic gradient descent","authors":"Alberto Lanconelli, Christopher S.A. Lauria","doi":"10.1016/j.jat.2025.106160","DOIUrl":"10.1016/j.jat.2025.106160","url":null,"abstract":"<div><div>In the machine learning literature stochastic gradient descent has recently been widely discussed for its purported implicit regularization properties. Much of the theory, that attempts to clarify the role of noise in stochastic gradient algorithms, has approximated stochastic gradient descent by a stochastic differential equation with Gaussian noise. We provide a rigorous theoretical justification for this practice that showcases how the Gaussianity of the noise arises naturally.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106160"},"PeriodicalIF":0.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudo s-numbers of embeddings of Gaussian weighted Sobolev spaces","authors":"Van Kien Nguyen","doi":"10.1016/j.jat.2025.106159","DOIUrl":"10.1016/j.jat.2025.106159","url":null,"abstract":"<div><div>In this paper, we study the approximation problem for functions in the Gaussian-weighted Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> of mixed smoothness <span><math><mrow><mi>α</mi><mo>∈</mo><mi>N</mi></mrow></math></span> with error measured in the Gaussian-weighted space <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span>. We obtain the exact asymptotic order of some pseudo <span><math><mi>s</mi></math></span>-numbers for the cases <span><math><mrow><mn>1</mn><mo>≤</mo><mi>q</mi><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mn>2</mn></mrow></math></span>. Additionally, we also obtain an upper bound and a lower bound for some pseudo <span><math><mi>s</mi></math></span>-numbers of the embedding of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> into <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow><mrow><msqrt><mrow><mi>g</mi></mrow></msqrt></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Our result is an extension of that obtained in Dinh Dũng and Van Kien Nguyen (IMA Journal of Numerical Analysis, 2023) for approximation and Kolmogorov numbers.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106159"},"PeriodicalIF":0.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relative asymptotics of multiple orthogonal polynomials for Nikishin systems of two measures","authors":"A. López García , G. López Lagomasino","doi":"10.1016/j.jat.2025.106158","DOIUrl":"10.1016/j.jat.2025.106158","url":null,"abstract":"<div><div>We study the relative asymptotics of two sequences of multiple orthogonal polynomials corresponding to two Nikishin systems of measures on the real line, the second one of which is obtained from the first one perturbing the generating measures with non-negative integrable functions. Each Nikishin system consists of two measures.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106158"},"PeriodicalIF":0.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chelo Ferreira , José L. López , Ester Pérez Sinusía
{"title":"The Pearcey integral in the highly oscillatory region II","authors":"Chelo Ferreira , José L. López , Ester Pérez Sinusía","doi":"10.1016/j.jat.2025.106150","DOIUrl":"10.1016/j.jat.2025.106150","url":null,"abstract":"<div><div>We consider the Pearcey integral <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> for large values of <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span> and bounded values of <span><math><mrow><mo>|</mo><mi>y</mi><mo>|</mo></mrow></math></span>. The standard saddle point analysis is difficult to apply because the Pearcey integral is highly oscillating in this region. To overcome this problem we use the modified saddle point method introduced in López et al. (2009). A complete asymptotic analysis is possible with this method, and we derive a complete asymptotic expansion of <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> for large <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span>, accompanied by the exact location of the Stokes lines. There are two Stokes lines that divide the complex <span><math><mrow><mi>x</mi><mo>−</mo></mrow></math></span>plane in two different sectors in which <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> behaves differently when <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span> is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. Both of them are of Poincaré type; one of them is given in terms of inverse powers of <span><math><mi>x</mi></math></span>; the other one in terms of inverse powers of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, and it is multiplied by an exponential factor that behaves differently in the two mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106150"},"PeriodicalIF":0.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimates for entropy numbers of sets of smooth functions on complex spheres","authors":"Deimer J.J. Aleans , Sergio A. Tozoni","doi":"10.1016/j.jat.2025.106151","DOIUrl":"10.1016/j.jat.2025.106151","url":null,"abstract":"<div><div>In this paper we investigate the asymptotic behavior of entropy numbers of multiplier operators <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> and <span><math><mi>Λ</mi></math></span>, defined for functions on the complex sphere <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, associated with sequences of multipliers of the type <span><math><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mi>λ</mi><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mi>λ</mi><mrow><mo>(</mo><mo>max</mo><mrow><mo>{</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>, respectively, for a bounded function <span><math><mi>λ</mi></math></span> defined on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>. If the operators <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> and <span><math><mi>Λ</mi></math></span> are bounded from <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> into <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>, and <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the closed unit ball of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, we study lower and upper estimates for the entropy numbers of the sets <span><math><mrow><msub><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>Λ</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> in <span><math><mrow><msup><mrow><mi","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106151"},"PeriodicalIF":0.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacek Gulgowski , Anna Kamont , Markus Passenbrunner
{"title":"Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities","authors":"Jacek Gulgowski , Anna Kamont , Markus Passenbrunner","doi":"10.1016/j.jat.2025.106149","DOIUrl":"10.1016/j.jat.2025.106149","url":null,"abstract":"<div><div>Let <span><math><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>ℱ</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span> be a probability space and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be a binary filtration. i.e. exactly one atom of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> is divided into <em>two</em> atoms of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by <span><math><mi>A</mi></math></span>. Let <span><math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> be a finite-dimensional linear subspace, having an additional stability property on atoms <span><math><mi>A</mi></math></span>. For these data, we consider two dictionaries: <ul><li><span>•</span><span><div><span><math><mrow><mi>C</mi><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mi>⋅</mi><msub><mrow><mi>1</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><mi>f</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>A</mi><mo>}</mo></mrow></mrow></math></span>,</div></span></li><li><span>•</span><span><div><span><math><mi>Φ</mi></math></span> – a local orthonormal system generated by <span><math><mi>S</mi></math></span> and the filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span>.</div></span></li></ul></div><div>Let <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>C</mi><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>Φ</mi></mrow></math></span>, with <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>. We are interested in approximation spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106149"},"PeriodicalIF":0.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Beltrán , Damir Ferizović , Pedro R. López-Gómez
{"title":"Measure-preserving mappings from the unit cube to some symmetric spaces","authors":"Carlos Beltrán , Damir Ferizović , Pedro R. López-Gómez","doi":"10.1016/j.jat.2025.106145","DOIUrl":"10.1016/j.jat.2025.106145","url":null,"abstract":"<div><div>We construct measure-preserving mappings from the <span><math><mi>d</mi></math></span>-dimensional unit cube to the <span><math><mi>d</mi></math></span>-dimensional unit ball and the compact rank one symmetric spaces, namely the <span><math><mi>d</mi></math></span>-dimensional sphere, the real, complex, and quaternionic projective spaces, and the Cayley plane. We also give a procedure to generate measure-preserving mappings from the <span><math><mi>d</mi></math></span>-dimensional unit cube to product spaces and fiber bundles under certain conditions.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106145"},"PeriodicalIF":0.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaling limits of complex and symplectic non-Hermitian Wishart ensembles","authors":"Sung-Soo Byun , Kohei Noda","doi":"10.1016/j.jat.2025.106148","DOIUrl":"10.1016/j.jat.2025.106148","url":null,"abstract":"<div><div>Non-Hermitian Wishart matrices were introduced in the context of quantum chromodynamics with a baryon chemical potential. These provide chiral extensions of the elliptic Ginibre ensembles as well as non-Hermitian extensions of the classical Wishart/Laguerre ensembles. In this work, we investigate eigenvalues of non-Hermitian Wishart matrices in the symmetry classes of complex and symplectic Ginibre ensembles. We introduce a generalised Christoffel–Darboux formula in the form of a certain second-order differential equation, offering a unified and robust method for analysing correlation functions across all scaling regimes in the model. By employing this method, we derive bulk and edge scaling limits for eigenvalue correlations at both strong and weak non-Hermiticity.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106148"},"PeriodicalIF":0.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143348474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uniform convergence of Fourier–Jacobi series to absolutely continuous functions","authors":"Magomed-Kasumov M.G","doi":"10.1016/j.jat.2025.106146","DOIUrl":"10.1016/j.jat.2025.106146","url":null,"abstract":"<div><div>It is shown that for any absolutely continuous function on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, the Fourier series with respect to the Jacobi polynomials <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msubsup></math></span> converges uniformly on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span> to this function if and only if <span><math><mrow><mo>−</mo><mn>1</mn><mo><</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mrow><mo>|</mo><mi>α</mi><mo>−</mo><mi>β</mi><mo>|</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106146"},"PeriodicalIF":0.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On simultaneous density order from shift invariant subspaces in Sobolev spaces","authors":"Ch. Boukeffous , A. San Antolín","doi":"10.1016/j.jat.2025.106147","DOIUrl":"10.1016/j.jat.2025.106147","url":null,"abstract":"<div><div>The notion of simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> from shift-invariant subspaces in Sobolev spaces was introduced in the paper by Zhao (1995). Moreover, a characterization of those principal shift-invariant subspaces that provide simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> was proved there. In this note, we prove another characterization using dilated by some adequate expansive linear maps of a shift-invariant subspace. In addition, we introduce the notion of simultaneous density order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and give necessary and sufficient conditions on a shift-invariant subspace to have a simultaneous density desired. To give our conditions, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of the generators of a shift-invariant subspace. For this, we will use the classical notion of approximate continuity.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106147"},"PeriodicalIF":0.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}