具有对映相互作用的单位圆上的点过程

IF 0.9 3区 数学 Q2 MATHEMATICS
Christophe Charlier
{"title":"具有对映相互作用的单位圆上的点过程","authors":"Christophe Charlier","doi":"10.1016/j.jat.2025.106161","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the point process</div><div><span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><msub><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>|</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>d</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mrow></math></span></div><div>where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the normalization constant. This point process is <em>attractive</em>: it involves <span><math><mi>n</mi></math></span> dependent, uniformly distributed random variables on the unit circle that attract each other. (For comparison, the well-studied C<span><math><mi>β</mi></math></span>E involves <span><math><mi>n</mi></math></span> uniformly distributed random variables on the unit circle that repel each other.) We consider linear statistics of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, where <span><math><mrow><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic. We prove that the leading order fluctuations around the mean are of order <span><math><mi>n</mi></math></span> and given by <span><math><mrow><mrow><mo>(</mo><mrow><mi>g</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow><mo>−</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>π</mi></mrow><mrow><mi>π</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mfrac><mrow><mi>d</mi><mi>θ</mi></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>n</mi></mrow></math></span>, where <span><math><mrow><mi>U</mi><mo>∼</mo><mi>Uniform</mi><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. We also prove that the subleading fluctuations around the mean are of order <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and of the form <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>β</mi><mo>)</mo></mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></math></span>, i.e. that the subleading fluctuations are given by a Gaussian random variable that itself has a random variance. Our proof uses techniques developed by McKay and Isaev (McKay, 1990; Isaev and McKay, 2018) to obtain asymptotics of related <span><math><mi>n</mi></math></span>-fold integrals.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106161"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A point process on the unit circle with antipodal interactions\",\"authors\":\"Christophe Charlier\",\"doi\":\"10.1016/j.jat.2025.106161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the point process</div><div><span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><msub><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>|</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>d</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mrow></math></span></div><div>where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the normalization constant. This point process is <em>attractive</em>: it involves <span><math><mi>n</mi></math></span> dependent, uniformly distributed random variables on the unit circle that attract each other. (For comparison, the well-studied C<span><math><mi>β</mi></math></span>E involves <span><math><mi>n</mi></math></span> uniformly distributed random variables on the unit circle that repel each other.) We consider linear statistics of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, where <span><math><mrow><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic. We prove that the leading order fluctuations around the mean are of order <span><math><mi>n</mi></math></span> and given by <span><math><mrow><mrow><mo>(</mo><mrow><mi>g</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow><mo>−</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>π</mi></mrow><mrow><mi>π</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mfrac><mrow><mi>d</mi><mi>θ</mi></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>n</mi></mrow></math></span>, where <span><math><mrow><mi>U</mi><mo>∼</mo><mi>Uniform</mi><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. We also prove that the subleading fluctuations around the mean are of order <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and of the form <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>β</mi><mo>)</mo></mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></math></span>, i.e. that the subleading fluctuations are given by a Gaussian random variable that itself has a random variance. Our proof uses techniques developed by McKay and Isaev (McKay, 1990; Isaev and McKay, 2018) to obtain asymptotics of related <span><math><mi>n</mi></math></span>-fold integrals.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"310 \",\"pages\":\"Article 106161\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452500019X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452500019X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入点过程1zn∏1≤j<;k≤n|eiθj+eiθk|β∏j=1ndθj,θ1,…,θn∈(−π,π],β>0,其中Zn为归一化常数。这个点过程是有吸引力的:它涉及到单位圆上相互吸引的n个相关的、均匀分布的随机变量。(相比之下,研究得很充分的CβE涉及到单位圆上n个相互排斥的均匀分布随机变量。)我们考虑形式为∑j=1ng(θj)的线性统计量为n→∞,其中g∈C1,q和2π周期。我们证明了均值周围的前阶波动是n阶的,由(g(U) -∫- ππg(θ)dθ2π)n给出,其中U ~均匀(- π,π)。我们还证明了在平均值附近的次先导波动是n阶的,形式是NR(0,4g ' (U)2/β)n,即次先导波动是由高斯随机变量给出的,该变量本身具有随机方差。我们的证明使用了McKay和Isaev (McKay, 1990;Isaev and McKay, 2018)得到相关n重积分的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A point process on the unit circle with antipodal interactions
We introduce the point process
1Zn1j<kn|eiθj+eiθk|βj=1ndθj,θ1,,θn(π,π],β>0,
where Zn is the normalization constant. This point process is attractive: it involves n dependent, uniformly distributed random variables on the unit circle that attract each other. (For comparison, the well-studied CβE involves n uniformly distributed random variables on the unit circle that repel each other.) We consider linear statistics of the form j=1ng(θj) as n, where gC1,q and 2π-periodic. We prove that the leading order fluctuations around the mean are of order n and given by (g(U)ππg(θ)dθ2π)n, where UUniform(π,π]. We also prove that the subleading fluctuations around the mean are of order n and of the form NR(0,4g(U)2/β)n, i.e. that the subleading fluctuations are given by a Gaussian random variable that itself has a random variance. Our proof uses techniques developed by McKay and Isaev (McKay, 1990; Isaev and McKay, 2018) to obtain asymptotics of related n-fold integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信