{"title":"Sharp iteration asymptotics for transfer operators induced by greedy β-expansions","authors":"Horia D. Cornean, Kasper S. Sørensen","doi":"10.1016/j.jat.2025.106234","DOIUrl":"10.1016/j.jat.2025.106234","url":null,"abstract":"<div><div>We consider base-<span><math><mi>β</mi></math></span> expansions of Parry’s type, where <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mn>1</mn></mrow></math></span> are integers and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mi>β</mi><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> is the positive solution to <span><math><mrow><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>β</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> (the golden ratio corresponds to <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>). The map <span><math><mrow><mi>x</mi><mo>↦</mo><mi>β</mi><mi>x</mi><mo>−</mo><mrow><mo>⌊</mo><mi>β</mi><mi>x</mi><mo>⌋</mo></mrow></mrow></math></span> induces a discrete dynamical system on the interval <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> and we study its associated transfer (Perron–Frobenius) operator <span><math><mi>P</mi></math></span>. Our main result can be roughly summarized as follows: we explicitly construct two piecewise affine functions <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> with <span><math><mrow><mi>P</mi><mi>u</mi><mo>=</mo><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>v</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>v</mi></mrow></math></span> such that for every sufficiently smooth <span><math><mi>F</mi></math></span> which is supported in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span> and satisfies <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>F</mi><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><mn>1</mn></mrow></math></span>, we have <span><math><mrow><msup><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>F</mi><mo>=</mo><mi>u</mi><mo>+</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mrow><mo>(</mo><mrow><mi>F</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>v</mi><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>. This is also compared with the case of integer bases, where more refined asymptotic formulas are possible.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106234"},"PeriodicalIF":0.6,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145026503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nevai’s condition for measures with unbounded supports","authors":"Grzegorz Świderski","doi":"10.1016/j.jat.2025.106232","DOIUrl":"10.1016/j.jat.2025.106232","url":null,"abstract":"<div><div>We study Nevai’s condition from the theory of orthogonal polynomials on the real line. We prove that a large class of measures with unbounded Jacobi parameters satisfies Nevai’s condition locally uniformly on the support of the measure away from a finite explicit set. This allows us to give applications to relative uniform and weak asymptotics of Christoffel–Darboux kernels on the diagonal and to limit theorems for unconventionally normalized global linear statistics of orthogonal polynomial ensembles.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"314 ","pages":"Article 106232"},"PeriodicalIF":0.6,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics of the Humbert functions Ψ1 and Ψ2","authors":"Peng-Cheng Hang , Malte Henkel , Min-Jie Luo","doi":"10.1016/j.jat.2025.106233","DOIUrl":"10.1016/j.jat.2025.106233","url":null,"abstract":"<div><div>A compilation of new results on the asymptotic behaviour of the Humbert functions <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and also on the Appell function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, is presented. As a by-product, we confirm a conjectured limit which appeared recently in the study of the <span><math><mrow><mn>1</mn><mi>D</mi></mrow></math></span> Glauber–Ising model. We also propose two elementary asymptotic methods and confirm through some illustrative examples that both methods have great potential and can be applied to a large class of problems of asymptotic analysis. Finally, some directions of future research are pointed out in order to suggest ideas for further study.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"314 ","pages":"Article 106233"},"PeriodicalIF":0.6,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145027835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A characterization of completely alternating functions","authors":"Monojit Bhattacharjee , Rajkamal Nailwal","doi":"10.1016/j.jat.2025.106230","DOIUrl":"10.1016/j.jat.2025.106230","url":null,"abstract":"<div><div>In this article, we characterize completely alternating functions on an abelian semigroup <span><math><mi>S</mi></math></span> in terms of completely monotone functions on the product semigroup <span><math><mrow><mi>S</mi><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span>. We also discuss completely alternating sequences induced by a class of rational functions and obtain a set of sufficient conditions (in terms of its zeros and poles) to determine them. As an application, we show a complete characterization of several classes of completely monotone functions on <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> induced by rational functions in two variables. We also derive a set of necessary conditions for the complete monotonicity of the sequence <span><math><mrow><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></mfrac><mo>}</mo></mrow></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106230"},"PeriodicalIF":0.6,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144890100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Widom factors in ℂn","authors":"Gökalp Alpan , Turgay Bayraktar , Norm Levenberg","doi":"10.1016/j.jat.2025.106227","DOIUrl":"10.1016/j.jat.2025.106227","url":null,"abstract":"<div><div>We generalize the theory of Widom factors to the <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> setting. We define Widom factors of compact subsets <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets <span><math><mrow><mi>K</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a non-polar compact subset of <span><math><mi>ℂ</mi></math></span>, these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions <span><math><mi>w</mi></math></span>; in particular, for the case <span><math><mrow><mi>w</mi><mo>≡</mo><mn>1</mn></mrow></math></span>. Finally, we define the Mahler measure of a multivariate polynomial relative to <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and obtain lower bounds for this quantity on product sets.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106227"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The sequence of partial sums of a unimodular power series is not ultraflat","authors":"Tamás Erdélyi","doi":"10.1016/j.jat.2025.106219","DOIUrl":"10.1016/j.jat.2025.106219","url":null,"abstract":"<div><div>We show that if <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of numbers <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>ℂ</mi></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, and <span><span><span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msup><mspace></mspace><mo>,</mo><mspace></mspace><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace></mspace><mo>,</mo></mrow></math></span></span></span>then <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> is NOT an ultraflat sequence of unimodular polynomials. This answers a question raised by Zachary Chase.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106219"},"PeriodicalIF":0.6,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144908604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing the degree of constrained and unconstrained trigonometric approximation","authors":"D. Leviatan , I. Shevchuk , V. Shevchuk","doi":"10.1016/j.jat.2025.106220","DOIUrl":"10.1016/j.jat.2025.106220","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. For a continuous <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic function, changing its monotonicity <span><math><mrow><mn>2</mn><mi>s</mi></mrow></math></span> times in a period, and whose degree of approximation by trigonometric polynomials of degree <span><math><mrow><mo><</mo><mi>n</mi></mrow></math></span>, is <span><math><mrow><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we investigate its degree of approximation by such polynomials that, in addition, follow the changes of monotonicity. Obviously, the unconstrained degree is smaller than the constrained one, but for <span><math><mrow><mi>r</mi><mo>></mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>, there is a constant <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> such that the constrained degree is <span><math><mrow><mo>≤</mo><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. On the other hand we show that, in general, this is invalid for <span><math><mrow><mi>r</mi><mo>≤</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106220"},"PeriodicalIF":0.6,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polynomial approximation in L2 with the double-sided exponential weight via complex analysis","authors":"Pierre Bizeul , Boaz Klartag","doi":"10.1016/j.jat.2025.106218","DOIUrl":"10.1016/j.jat.2025.106218","url":null,"abstract":"<div><div>We study the problem of polynomial approximation in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>\u0000 (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>), where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>\u0000 (<span><math><mrow><mi>d</mi><mi>x</mi></mrow></math></span>) = <span><math><mrow><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>. We show that for any absolutely continuous function <span><math><mi>f</mi></math></span>, <span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></munderover><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>〉</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>C</mi><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced></mrow></math></span> for some universal constant <span><math><mrow><mi>C</mi><mo>></mo><mn>0</mn></mrow></math></span>, where <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> are the orthonormal polynomials associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. This inequality is tight in the sense that <span><math><mrow><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> on the left-hand side cannot be replaced by <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> for any sequence <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>→</mo><mi>∞</mi></mrow></math></span>. When the right-hand side is bounded, this inequality implies a logarithmic rate of approximati","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106218"},"PeriodicalIF":0.6,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On positive Jacobi matrices with compact inverses","authors":"Pavel Šťovíček , Grzegorz Świderski","doi":"10.1016/j.jat.2025.106217","DOIUrl":"10.1016/j.jat.2025.106217","url":null,"abstract":"<div><div>We consider positive Jacobi matrices <span><math><mi>J</mi></math></span> with compact inverses and consequently with purely discrete spectra. A number of properties of the corresponding sequence of orthogonal polynomials is studied including the convergence of their zeros, the vague convergence of the zero counting measures and of the Christoffel–Darboux kernels on the diagonal. Particularly, if the inverse of <span><math><mi>J</mi></math></span> belongs to some Schatten class, we identify the asymptotic behavior of the sequence of orthogonal polynomials and express it in terms of its regularized characteristic function. In the even more special case when the inverse of <span><math><mi>J</mi></math></span> belongs to the trace class, we derive various formulas for the orthogonality measure, eigenvectors of <span><math><mi>J</mi></math></span> as well as for the functions of the second kind and related objects. These general results are given a more explicit form in the case when <span><math><mrow><mo>−</mo><mi>J</mi></mrow></math></span> is a generator of a Birth–Death process. Among others, we provide a formula for the trace of the inverse of <span><math><mi>J</mi></math></span>. We illustrate our results by introducing and studying a modification of the <span><math><mi>q</mi></math></span>-Laguerre polynomials corresponding to a determinate moment problem.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106217"},"PeriodicalIF":0.6,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144763703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction and approximation properties of exact neural network interpolation operators activated by entire functions","authors":"Dansheng Yu","doi":"10.1016/j.jat.2025.106215","DOIUrl":"10.1016/j.jat.2025.106215","url":null,"abstract":"<div><div>The construction and approximation properties of exact neural network interpolation are the important and challenging topics on approximation by neural networks. Most research on exact neural network interpolation has focused on establishing existence, with very few specifically constructed interpolation neural networks proposed. The main purpose of the present paper is to provide a method for directly constructing exact neural network interpolation operators, which has the advantages that all the components in the neural network operators are explicitly known, such as the coefficients, the weights and the thresholds. By employing some important methods in approximation theory, such as the equivalence between the <span><math><mrow><mi>K</mi><mo>−</mo></mrow></math></span>functional and the modulus of continuity of the function, Berens–Lorentz Lemma, and two useful estimates of the derivatives of the operators, we establish both the direct and the converse results of approximation by the new interpolation operators, and thus obtain an equivalence characterization theorem. We also introduce a type of neural network interpolation operators with four layers and a type of max-product neural network operators, rigorously analyzing their approximation properties.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106215"},"PeriodicalIF":0.6,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144721942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}