Journal of Approximation Theory最新文献

筛选
英文 中文
Optimization-aided construction of multivariate Chebyshev polynomials 优化辅助构建多元切比雪夫多项式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-24 DOI: 10.1016/j.jat.2024.106116
M. Dressler , S. Foucart , M. Joldes , E. de Klerk , J.B. Lasserre , Y. Xu
{"title":"Optimization-aided construction of multivariate Chebyshev polynomials","authors":"M. Dressler ,&nbsp;S. Foucart ,&nbsp;M. Joldes ,&nbsp;E. de Klerk ,&nbsp;J.B. Lasserre ,&nbsp;Y. Xu","doi":"10.1016/j.jat.2024.106116","DOIUrl":"10.1016/j.jat.2024.106116","url":null,"abstract":"<div><div>This article is concerned with an extension of univariate Chebyshev polynomials of the first kind to the multivariate setting, where one chases best approximants to specific monomials by polynomials of lower degree relative to the uniform norm. Exploiting the Moment-SOS hierarchy, we devise a versatile semidefinite-programming-based procedure to compute such best approximants, as well as associated signatures. Applying this procedure in three variables leads to the values of best approximation errors for all monomials up to degree six on the euclidean ball, the simplex, and the cross-polytope. Furthermore, inspired by numerical experiments, we obtain explicit expressions for Chebyshev polynomials in two cases unresolved before, namely for the monomial <span><math><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> on the euclidean ball and for the monomial <span><math><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> on the simplex.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In search of a higher Bochner theorem 寻找更高的波赫纳定理
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-22 DOI: 10.1016/j.jat.2024.106114
Emil Horozov , Boris Shapiro , Miloš Tater
{"title":"In search of a higher Bochner theorem","authors":"Emil Horozov ,&nbsp;Boris Shapiro ,&nbsp;Miloš Tater","doi":"10.1016/j.jat.2024.106114","DOIUrl":"10.1016/j.jat.2024.106114","url":null,"abstract":"<div><div>We initiate the study of a natural generalisation of the classical Bochner–Krall problem asking which linear ordinary differential operators possess sequences of eigenpolynomials satisfying linear recurrence relations of finite length; the classical case corresponds to the 3-term recurrence relations with real coefficients subject to some extra restrictions. We formulate a general conjecture and prove it in the first non-trivial case of operators of order 3.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials 广义贝塞尔多项式单位圆上的正交权重
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-22 DOI: 10.1016/j.jat.2024.106115
Sergey M. Zagorodnyuk
{"title":"Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials","authors":"Sergey M. Zagorodnyuk","doi":"10.1016/j.jat.2024.106115","DOIUrl":"10.1016/j.jat.2024.106115","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper we study the generalized Bessel polynomials &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (in the notation of Krall and Frink). Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In this case we present the following positive continuous weights &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on the unit circle for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;: &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;cos&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;cos&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;sin&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Namely, we have &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; Notice that this orthogon","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation 求解三维对流扩散方程的巴利心理性插值法
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-09 DOI: 10.1016/j.jat.2024.106106
Jin Li, Yongling Cheng
{"title":"Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation","authors":"Jin Li,&nbsp;Yongling Cheng","doi":"10.1016/j.jat.2024.106106","DOIUrl":"10.1016/j.jat.2024.106106","url":null,"abstract":"<div><div>Barycentric rational interpolation collocation method (BRICM) is presented to solve 3-dimensional convection–diffusion (CD) equation. The unknown value is approximated by barycentric rational interpolation basis, the discrete CD equation is written into the matrix equation. At last, the stability and convergence rate of BRIM for CD equation are proven and a numerical example is illustrated in our results.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the representability of a continuous multivariate function by sums of ridge functions 论脊函数之和对连续多元函数的可表示性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-09 DOI: 10.1016/j.jat.2024.106105
Rashid A. Aliev , Fidan M. Isgandarli
{"title":"On the representability of a continuous multivariate function by sums of ridge functions","authors":"Rashid A. Aliev ,&nbsp;Fidan M. Isgandarli","doi":"10.1016/j.jat.2024.106105","DOIUrl":"10.1016/j.jat.2024.106105","url":null,"abstract":"<div><div>In this paper, new conditions are found for the representability of a continuous multivariate function as a sum of ridge functions. Using these conditions, we give a new proof for the earlier theorem solving the problem, posed by A.Pinkus in his monograph “Ridge Functions”, up to a multivariate polynomial. That is, we show that if a continuous multivariate function has a representation as a sum of arbitrarily behaved ridge functions, then it can be represented as a sum of continuous ridge functions and some multivariate polynomial.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sharp heat kernel estimates in the context of Fourier–Dini expansions 关于傅立叶-迪尼展开中的尖锐热核估计值
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-09-28 DOI: 10.1016/j.jat.2024.106103
Bartosz Langowski , Adam Nowak
{"title":"On sharp heat kernel estimates in the context of Fourier–Dini expansions","authors":"Bartosz Langowski ,&nbsp;Adam Nowak","doi":"10.1016/j.jat.2024.106103","DOIUrl":"10.1016/j.jat.2024.106103","url":null,"abstract":"<div><div>We prove sharp estimates of the heat kernel associated with Fourier–Dini expansions on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> equipped with Lebesgue measure and the Neumann condition imposed on the right endpoint. Then we give several applications of this result including sharp bounds for the corresponding Poisson and potential kernels, sharp mapping properties of the maximal heat semigroup and potential operators and boundary convergence of the Fourier–Dini semigroup.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translation-based completeness on compact intervals 紧凑区间上基于翻译的完备性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-09-28 DOI: 10.1016/j.jat.2024.106104
Lukas Liehr
{"title":"Translation-based completeness on compact intervals","authors":"Lukas Liehr","doi":"10.1016/j.jat.2024.106104","DOIUrl":"10.1016/j.jat.2024.106104","url":null,"abstract":"<div><div>Given a compact interval <span><math><mrow><mi>I</mi><mo>⊆</mo><mi>R</mi></mrow></math></span>, and a function <span><math><mi>f</mi></math></span> that is a product of a nonzero polynomial with a Gaussian, it will be shown that the translates <span><math><mrow><mo>{</mo><mi>f</mi><mrow><mo>(</mo><mi>⋅</mi><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></mrow></math></span> are complete in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></mrow></math></span> if and only if the series of reciprocals of <span><math><mi>Λ</mi></math></span> diverges. This extends a theorem in [R. A. Zalik, Trans. Amer. Math. Soc. 243, 299–308]. An additional characterization is obtained when <span><math><mi>Λ</mi></math></span> is an arithmetic progression, and the generator <span><math><mi>f</mi></math></span> constitutes a linear combination of translates of a function with sufficiently fast decay.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotonicity of zeros of derivatives of Bessel functions 贝塞尔函数导数零点的单调性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-09-26 DOI: 10.1016/j.jat.2024.106102
Dimitar K. Dimitrov, Yen Chi Lun
{"title":"Monotonicity of zeros of derivatives of Bessel functions","authors":"Dimitar K. Dimitrov,&nbsp;Yen Chi Lun","doi":"10.1016/j.jat.2024.106102","DOIUrl":"10.1016/j.jat.2024.106102","url":null,"abstract":"<div><div>Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the <span><math><mi>n</mi></math></span>th derivative of the Bessel function of the first kind <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are all real when <span><math><mrow><mi>ν</mi><mo>&gt;</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>. We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the positive zeros of <span><math><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are increasing functions of the parameter <span><math><mi>ν</mi></math></span>, for <span><math><mrow><mi>ν</mi><mo>∈</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>. We provide two apparently distinct proofs of the conjecture.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bernstein- and Marcinkiewicz-type inequalities on multivariate Cα-domains 论多变量 Cα 域上的伯恩斯坦和马钦凯维奇型不等式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-09-16 DOI: 10.1016/j.jat.2024.106101
Feng Dai , András Kroó , Andriy Prymak
{"title":"On Bernstein- and Marcinkiewicz-type inequalities on multivariate Cα-domains","authors":"Feng Dai ,&nbsp;András Kroó ,&nbsp;Andriy Prymak","doi":"10.1016/j.jat.2024.106101","DOIUrl":"10.1016/j.jat.2024.106101","url":null,"abstract":"<div><p>We prove new Bernstein and Markov type inequalities in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spaces associated with the normal and the tangential derivatives on the boundary of a general compact <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-domain with <span><math><mrow><mn>1</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. These estimates are also applied to establish Marcinkiewicz type inequalities for discretization of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norms of algebraic polynomials on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-domains with asymptotically optimal number of function samples used.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lower bounds for piecewise polynomial approximations of oscillatory functions 振荡函数的片断多项式近似值下限
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-09-14 DOI: 10.1016/j.jat.2024.106100
Jeffrey Galkowski
{"title":"Lower bounds for piecewise polynomial approximations of oscillatory functions","authors":"Jeffrey Galkowski","doi":"10.1016/j.jat.2024.106100","DOIUrl":"10.1016/j.jat.2024.106100","url":null,"abstract":"<div><p>We prove lower bounds on the error incurred when approximating any oscillating function using piecewise polynomial spaces. The estimates are explicit in the polynomial degree and have optimal dependence on the meshwidth and frequency when the polynomial degree is fixed. These lower bounds, for example, apply when approximating solutions to Helmholtz plane wave scattering problem.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000881/pdfft?md5=fb33e23c82eb14bbcd3a20a9e7b11759&pid=1-s2.0-S0021904524000881-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信