Sharp iteration asymptotics for transfer operators induced by greedy β-expansions

IF 0.6 3区 数学 Q2 MATHEMATICS
Horia D. Cornean, Kasper S. Sørensen
{"title":"Sharp iteration asymptotics for transfer operators induced by greedy β-expansions","authors":"Horia D. Cornean,&nbsp;Kasper S. Sørensen","doi":"10.1016/j.jat.2025.106234","DOIUrl":null,"url":null,"abstract":"<div><div>We consider base-<span><math><mi>β</mi></math></span> expansions of Parry’s type, where <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mn>1</mn></mrow></math></span> are integers and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> is the positive solution to <span><math><mrow><msup><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>β</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> (the golden ratio corresponds to <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>). The map <span><math><mrow><mi>x</mi><mo>↦</mo><mi>β</mi><mi>x</mi><mo>−</mo><mrow><mo>⌊</mo><mi>β</mi><mi>x</mi><mo>⌋</mo></mrow></mrow></math></span> induces a discrete dynamical system on the interval <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> and we study its associated transfer (Perron–Frobenius) operator <span><math><mi>P</mi></math></span>. Our main result can be roughly summarized as follows: we explicitly construct two piecewise affine functions <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> with <span><math><mrow><mi>P</mi><mi>u</mi><mo>=</mo><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>v</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>v</mi></mrow></math></span> such that for every sufficiently smooth <span><math><mi>F</mi></math></span> which is supported in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span> and satisfies <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>F</mi><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><mn>1</mn></mrow></math></span>, we have <span><math><mrow><msup><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>F</mi><mo>=</mo><mi>u</mi><mo>+</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mrow><mo>(</mo><mrow><mi>F</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>v</mi><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>. This is also compared with the case of integer bases, where more refined asymptotic formulas are possible.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106234"},"PeriodicalIF":0.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000929","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider base-β expansions of Parry’s type, where a0a11 are integers and a0<β<a0+1 is the positive solution to β2=a0β+a1 (the golden ratio corresponds to a0=a1=1). The map xβxβx induces a discrete dynamical system on the interval [0,1) and we study its associated transfer (Perron–Frobenius) operator P. Our main result can be roughly summarized as follows: we explicitly construct two piecewise affine functions u and v with Pu=u and Pv=β1v such that for every sufficiently smooth F which is supported in [0,1] and satisfies 01Fdx=1, we have PkF=u+βk(F(1)F(0))v+o(βk) in L. This is also compared with the case of integer bases, where more refined asymptotic formulas are possible.
由贪婪β-展开诱导的转移算子的尖锐迭代渐近性
我们考虑Parry型的碱-β展开式,其中a0≥a1≥1是整数,a0<β<;a0+1是β2=a0β+a1的正解(黄金比例对应于a0=a1=1)。映射x∈βx−⌊βx⌋在区间[0,1)上推导出一个离散动力系统,并研究了其相关的转移算子p。我们的主要结果可以大致概括如下:我们显式构造了两个分段仿射函数u和v, Pu=u和Pv=β - 1v,使得对于每一个在[0,1]中支持且满足∫01Fdx=1的充分光滑F,我们有PkF=u+β - k(F(1)−F(0))v+o(β - k)在L∞上。这也与整数基的情况进行了比较,在整数基的情况下,更精细的渐近公式是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信