Journal of Approximation Theory最新文献

筛选
英文 中文
Strictly positive definite functions on spheres 球面上的严格正定函数
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-11-15 DOI: 10.1016/j.jat.2024.106120
Tianshi Lu
{"title":"Strictly positive definite functions on spheres","authors":"Tianshi Lu","doi":"10.1016/j.jat.2024.106120","DOIUrl":"10.1016/j.jat.2024.106120","url":null,"abstract":"<div><div>In this paper, we proved that a positive definite radial function on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with support in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></mrow></math></span> is strictly positive definite on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and real projective space <span><math><msup><mrow><mi>RP</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for odd <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. We also proved that the truncated power function <span><math><msubsup><mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>⋅</mi><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></msubsup></math></span> is strictly positive definite on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>RP</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"306 ","pages":"Article 106120"},"PeriodicalIF":0.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sampling theorems with derivatives in shift-invariant spaces generated by periodic exponential B-splines 周期性指数 B 样条生成的移位不变空间中的导数采样定理
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-11-15 DOI: 10.1016/j.jat.2024.106118
Karlheinz Gröchenig, Irina Shafkulovska
{"title":"Sampling theorems with derivatives in shift-invariant spaces generated by periodic exponential B-splines","authors":"Karlheinz Gröchenig,&nbsp;Irina Shafkulovska","doi":"10.1016/j.jat.2024.106118","DOIUrl":"10.1016/j.jat.2024.106118","url":null,"abstract":"<div><div>We derive sufficient conditions for sampling with derivatives in shift-invariant spaces generated by a periodic exponential B-spline. The sufficient conditions are expressed with a new notion of measuring the gap between consecutive samples. These conditions are near optimal, and, in particular, they imply the existence of sampling sets with lower Beurling density arbitrarily close to the necessary density.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"306 ","pages":"Article 106118"},"PeriodicalIF":0.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Bell polynomials 广义贝尔多项式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-11-15 DOI: 10.1016/j.jat.2024.106121
Antonio J. Durán
{"title":"Generalized Bell polynomials","authors":"Antonio J. Durán","doi":"10.1016/j.jat.2024.106121","DOIUrl":"10.1016/j.jat.2024.106121","url":null,"abstract":"<div><div>In this paper, generalized Bell polynomials <span><math><msub><mrow><mrow><mo>(</mo><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> associated to a sequence of real numbers <span><math><mrow><mi>ϕ</mi><mo>=</mo><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> are introduced. Bell polynomials correspond to <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We prove that when <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>≥</mo><mn>1</mn></mrow></math></span>: (a) the zeros of the generalized Bell polynomial <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span> are simple, real and non positive; (b) the zeros of <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span> interlace the zeros of <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span>; (c) the zeros are decreasing functions of the parameters <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"306 ","pages":"Article 106121"},"PeriodicalIF":0.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization-aided construction of multivariate Chebyshev polynomials 优化辅助构建多元切比雪夫多项式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-24 DOI: 10.1016/j.jat.2024.106116
M. Dressler , S. Foucart , M. Joldes , E. de Klerk , J.B. Lasserre , Y. Xu
{"title":"Optimization-aided construction of multivariate Chebyshev polynomials","authors":"M. Dressler ,&nbsp;S. Foucart ,&nbsp;M. Joldes ,&nbsp;E. de Klerk ,&nbsp;J.B. Lasserre ,&nbsp;Y. Xu","doi":"10.1016/j.jat.2024.106116","DOIUrl":"10.1016/j.jat.2024.106116","url":null,"abstract":"<div><div>This article is concerned with an extension of univariate Chebyshev polynomials of the first kind to the multivariate setting, where one chases best approximants to specific monomials by polynomials of lower degree relative to the uniform norm. Exploiting the Moment-SOS hierarchy, we devise a versatile semidefinite-programming-based procedure to compute such best approximants, as well as associated signatures. Applying this procedure in three variables leads to the values of best approximation errors for all monomials up to degree six on the euclidean ball, the simplex, and the cross-polytope. Furthermore, inspired by numerical experiments, we obtain explicit expressions for Chebyshev polynomials in two cases unresolved before, namely for the monomial <span><math><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> on the euclidean ball and for the monomial <span><math><mrow><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> on the simplex.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106116"},"PeriodicalIF":0.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaussian quadrature formulae are strongly asymptotically optimal for a class of infinitely differentiable functions 高斯正交公式是一类无限可微分函数的强渐近最优公式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-24 DOI: 10.1016/j.jat.2024.106117
Guiqiao Xu
{"title":"Gaussian quadrature formulae are strongly asymptotically optimal for a class of infinitely differentiable functions","authors":"Guiqiao Xu","doi":"10.1016/j.jat.2024.106117","DOIUrl":"10.1016/j.jat.2024.106117","url":null,"abstract":"<div><div>This paper investigates the optimal quadrature formulae of a class <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> of infinitely differentiable functions on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. We obtain the strong equivalences of the optimal worst case errors of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> for standard information and Hermite data. We proved that the Gaussian quadrature formulae are strongly asymptotically optimal.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106117"},"PeriodicalIF":0.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In search of a higher Bochner theorem 寻找更高的波赫纳定理
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-22 DOI: 10.1016/j.jat.2024.106114
Emil Horozov , Boris Shapiro , Miloš Tater
{"title":"In search of a higher Bochner theorem","authors":"Emil Horozov ,&nbsp;Boris Shapiro ,&nbsp;Miloš Tater","doi":"10.1016/j.jat.2024.106114","DOIUrl":"10.1016/j.jat.2024.106114","url":null,"abstract":"<div><div>We initiate the study of a natural generalisation of the classical Bochner–Krall problem asking which linear ordinary differential operators possess sequences of eigenpolynomials satisfying linear recurrence relations of finite length; the classical case corresponds to the 3-term recurrence relations with real coefficients subject to some extra restrictions. We formulate a general conjecture and prove it in the first non-trivial case of operators of order 3.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106114"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials 广义贝塞尔多项式单位圆上的正交权重
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-22 DOI: 10.1016/j.jat.2024.106115
Sergey M. Zagorodnyuk
{"title":"Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials","authors":"Sergey M. Zagorodnyuk","doi":"10.1016/j.jat.2024.106115","DOIUrl":"10.1016/j.jat.2024.106115","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper we study the generalized Bessel polynomials &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (in the notation of Krall and Frink). Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In this case we present the following positive continuous weights &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on the unit circle for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;: &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;cos&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;cos&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;sin&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Namely, we have &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; Notice that this orthogon","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106115"},"PeriodicalIF":0.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation 求解三维对流扩散方程的巴利心理性插值法
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-09 DOI: 10.1016/j.jat.2024.106106
Jin Li, Yongling Cheng
{"title":"Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation","authors":"Jin Li,&nbsp;Yongling Cheng","doi":"10.1016/j.jat.2024.106106","DOIUrl":"10.1016/j.jat.2024.106106","url":null,"abstract":"<div><div>Barycentric rational interpolation collocation method (BRICM) is presented to solve 3-dimensional convection–diffusion (CD) equation. The unknown value is approximated by barycentric rational interpolation basis, the discrete CD equation is written into the matrix equation. At last, the stability and convergence rate of BRIM for CD equation are proven and a numerical example is illustrated in our results.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"304 ","pages":"Article 106106"},"PeriodicalIF":0.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the representability of a continuous multivariate function by sums of ridge functions 论脊函数之和对连续多元函数的可表示性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-10-09 DOI: 10.1016/j.jat.2024.106105
Rashid A. Aliev , Fidan M. Isgandarli
{"title":"On the representability of a continuous multivariate function by sums of ridge functions","authors":"Rashid A. Aliev ,&nbsp;Fidan M. Isgandarli","doi":"10.1016/j.jat.2024.106105","DOIUrl":"10.1016/j.jat.2024.106105","url":null,"abstract":"<div><div>In this paper, new conditions are found for the representability of a continuous multivariate function as a sum of ridge functions. Using these conditions, we give a new proof for the earlier theorem solving the problem, posed by A.Pinkus in his monograph “Ridge Functions”, up to a multivariate polynomial. That is, we show that if a continuous multivariate function has a representation as a sum of arbitrarily behaved ridge functions, then it can be represented as a sum of continuous ridge functions and some multivariate polynomial.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"304 ","pages":"Article 106105"},"PeriodicalIF":0.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sharp heat kernel estimates in the context of Fourier–Dini expansions 关于傅立叶-迪尼展开中的尖锐热核估计值
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-09-28 DOI: 10.1016/j.jat.2024.106103
Bartosz Langowski , Adam Nowak
{"title":"On sharp heat kernel estimates in the context of Fourier–Dini expansions","authors":"Bartosz Langowski ,&nbsp;Adam Nowak","doi":"10.1016/j.jat.2024.106103","DOIUrl":"10.1016/j.jat.2024.106103","url":null,"abstract":"<div><div>We prove sharp estimates of the heat kernel associated with Fourier–Dini expansions on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> equipped with Lebesgue measure and the Neumann condition imposed on the right endpoint. Then we give several applications of this result including sharp bounds for the corresponding Poisson and potential kernels, sharp mapping properties of the maximal heat semigroup and potential operators and boundary convergence of the Fourier–Dini semigroup.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"304 ","pages":"Article 106103"},"PeriodicalIF":0.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信