{"title":"Global rational approximations of functions with factorially divergent asymptotic series","authors":"N. Castillo, O. Costin, R.D. Costin","doi":"10.1016/j.jat.2025.106178","DOIUrl":"10.1016/j.jat.2025.106178","url":null,"abstract":"<div><div>We construct a new type of convergent, and asymptotic, representations, dyadic expansions. Their convergence is geometric and the region of convergence often extends from infinity down to <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. We show that dyadic expansions are numerically efficient representations.</div><div>For special functions such as Bessel, Airy, Ei, erfc, Gamma, etc. the region of convergence of dyadic series is the complex plane minus a ray, with this cut chosen at will. Dyadic expansions thus provide uniform, geometrically convergent asymptotic expansions including near antistokes rays.</div><div>We prove that relatively general functions, Écalle resurgent ones, possess convergent dyadic expansions.</div><div>These expansions extend to operators, resulting in representations of the resolvent of self-adjoint operators as series in terms of the associated unitary evolution operator evaluated at some prescribed discrete times (alternatively, for positive operators, in terms of the generated semigroup).</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"311 ","pages":"Article 106178"},"PeriodicalIF":0.9,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143907604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefan Bamberger , Reinhard Heckel , Felix Krahmer
{"title":"Approximating positive homogeneous functions with scale invariant neural networks","authors":"Stefan Bamberger , Reinhard Heckel , Felix Krahmer","doi":"10.1016/j.jat.2025.106177","DOIUrl":"10.1016/j.jat.2025.106177","url":null,"abstract":"<div><div>We investigate the approximation of positive homogeneous functions, i.e., functions <span><math><mi>f</mi></math></span> satisfying <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>λ</mi><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>λ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, with neural networks. Extending previous work, we establish new results explaining under which conditions such functions can be approximated with neural networks. As a key application for this, we analyze to what extent it is possible to solve linear inverse problems with <span><math><mo>ReLu</mo></math></span> networks. Due to the scaling invariance arising from the linearity, an optimal reconstruction function for such a problem is positive homogeneous. In a <span><math><mo>ReLu</mo></math></span> network, this condition translates to considering networks without bias terms. For the recovery of sparse vectors from few linear measurements, our results imply that <span><math><mo>ReLu</mo></math></span> networks with two hidden layers allow approximate recovery with arbitrary precision and arbitrary sparsity level <span><math><mi>s</mi></math></span> in a stable way. In contrast, we also show that with only one hidden layer such networks cannot even recover 1-sparse vectors, not even approximately, and regardless of the width of the network. These findings even apply to a wider class of recovery problems including low-rank matrix recovery and phase retrieval. Our results also shed some light on the seeming contradiction between previous works showing that neural networks for inverse problems typically have very large Lipschitz constants, but still perform very well also for adversarial noise. Namely, the error bounds in our expressivity results include a combination of a small constant term and a term that is linear in the noise level, indicating that robustness issues may occur only for very small noise levels.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"311 ","pages":"Article 106177"},"PeriodicalIF":0.9,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a lemma by Brézis and Haraux","authors":"Minh N. Bùi","doi":"10.1016/j.jat.2025.106175","DOIUrl":"10.1016/j.jat.2025.106175","url":null,"abstract":"<div><div>We propose several applications of an often overlooked part of the 1976 paper by Brézis and Haraux, in which the Brézis–Haraux theorem was established. Our results unify and extend various existing ones on the range of a linearly composite monotone operator and provide new insight into their seminal paper.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"311 ","pages":"Article 106175"},"PeriodicalIF":0.9,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143882922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nyström subsampling for functional linear regression","authors":"Jun Fan , Jiading Liu , Lei Shi","doi":"10.1016/j.jat.2025.106176","DOIUrl":"10.1016/j.jat.2025.106176","url":null,"abstract":"<div><div>Kernel methods have proven to be highly effective for functional data analysis, demonstrating significant theoretical and practical success over the past two decades. However, their computational complexity and storage requirements hinder their direct application to large-scale functional data learning problems. In this paper, we address this limitation by investigating the theoretical properties of the Nyström subsampling method within the framework of the functional linear regression model and reproducing kernel Hilbert space. Our proposed algorithm not only overcomes the computational challenges but also achieves the minimax optimal rate of convergence for the excess prediction risk, provided an appropriate subsampling size is chosen. Our error analysis relies on the approximation of integral operators induced by the reproducing kernel and covariance function.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106176"},"PeriodicalIF":0.9,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143854851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extension of the best polynomial operator in generalized Orlicz Spaces","authors":"Sonia Acinas , Sergio Favier , Rosa Lorenzo","doi":"10.1016/j.jat.2025.106174","DOIUrl":"10.1016/j.jat.2025.106174","url":null,"abstract":"<div><div>In this paper, we consider the best multivalued polynomial approximation operator for functions in an Orlicz Space <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>φ</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. We obtain its characterization involving <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, which are the left and right derivative functions of <span><math><mi>φ</mi></math></span>. And then, we extend the operator to <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>ψ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. We also get pointwise convergence of this extension, where the Calderón–Zygmund class <span><math><mrow><msubsup><mrow><mi>t</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> adapted to <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>ψ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> plays an important role.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106174"},"PeriodicalIF":0.9,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rearrangement-invariant norm inequalities for convolution operators","authors":"Ron Kerman , S. Spektor","doi":"10.1016/j.jat.2025.106173","DOIUrl":"10.1016/j.jat.2025.106173","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where, as usual, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of Lebesgue-integrable functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> denotes the class of functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> that are Lebesgue-measurable and bounded almost everywhere. Given <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, set <span><span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>k</mi><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>y</mi><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We study inequalities of the form <span><span><span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>f</mi><mo>)</mo></mrow><mo>≤</mo><mi>C</mi><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>in which <span><math><mrow><mi>C</mi><mo>></mo><mn>0</mn></mrow></math></span> is independent of <span><math><mrow><mi>f</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The functionals <span><math><mi>ρ</mi></math></span> and <span><math><mi>σ</mi></math></span> are so-called rearrangement-invariant (r.i.) norms on <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></m","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106173"},"PeriodicalIF":0.9,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143714999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics of Bergman polynomials for domains with reflection-invariant corners","authors":"Erwin Miña-Díaz , Aron Wennman","doi":"10.1016/j.jat.2025.106172","DOIUrl":"10.1016/j.jat.2025.106172","url":null,"abstract":"<div><div>We study the asymptotic behavior of the Bergman orthogonal polynomials <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> for a class of bounded simply connected domains <span><math><mi>D</mi></math></span>. The class is defined by the requirement that conformal maps <span><math><mi>φ</mi></math></span> of <span><math><mi>D</mi></math></span> onto the unit disk extend analytically across the boundary <span><math><mi>L</mi></math></span> of <span><math><mi>D</mi></math></span>, and that <span><math><msup><mrow><mi>φ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> has a finite number of zeros <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> on <span><math><mi>L</mi></math></span>. The boundary <span><math><mi>L</mi></math></span> is then piecewise analytic with corners at the zeros of <span><math><msup><mrow><mi>φ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. A result of Stylianopoulos implies that a Carleman-type strong asymptotic formula for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> holds on the exterior domain <span><math><mrow><mi>ℂ</mi><mo>∖</mo><mover><mrow><mi>D</mi></mrow><mo>¯</mo></mover></mrow></math></span>. We prove that the same formula remains valid across <span><math><mrow><mi>L</mi><mo>∖</mo><mrow><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and on a maximal open subset of <span><math><mi>D</mi></math></span>. As a consequence, the only boundary points that attract zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the corners. This is in stark contrast to the case when <span><math><mi>φ</mi></math></span> fails to admit an analytic extension past <span><math><mi>L</mi></math></span>, since when this happens the zero counting measure of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is known to approach the equilibrium measure for <span><math><mi>L</mi></math></span> along suitable subsequences.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106172"},"PeriodicalIF":0.9,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143697047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exact asymptotic order for generalised adaptive approximations","authors":"Marc Kesseböhmer, Aljoscha Niemann","doi":"10.1016/j.jat.2025.106171","DOIUrl":"10.1016/j.jat.2025.106171","url":null,"abstract":"<div><div>In this note, we present an abstract approach to study asymptotic orders for adaptive approximations with respect to a monotone set function <span><math><mi>J</mi></math></span> defined on dyadic cubes. We determine the exact upper order in terms of the critical value of the corresponding <span><math><mi>J</mi></math></span>-partition function, and we are able to provide upper and lower bounds in terms of fractal-geometric quantities. With properly chosen <span><math><mi>J</mi></math></span>, our new approach has applications in many different areas of mathematics, including the spectral theory of Kreĭn–Feller operators, quantisation dimensions of compactly supported probability measures, and the exact asymptotic order for Kolmogorov, Gel'fand and linear widths for Sobolev embeddings into the Lebesgue space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106171"},"PeriodicalIF":0.9,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143680340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Markus Hansen , Benjamin Scharf, Cornelia Schneider
{"title":"Relations between Kondratiev spaces and refined localization Triebel–Lizorkin spaces","authors":"Markus Hansen , Benjamin Scharf, Cornelia Schneider","doi":"10.1016/j.jat.2025.106162","DOIUrl":"10.1016/j.jat.2025.106162","url":null,"abstract":"<div><div>We investigate the close relation between certain weighted Sobolev spaces (Kondratiev spaces) and refined localization spaces from Triebel (2006), Triebel (2008). In particular, using a characterization for refined localization spaces from Scharf (2014), we considerably improve an embedding from Hansen (2013). This embedding is of special interest in connection with convergence rates for adaptive approximation schemes.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106162"},"PeriodicalIF":0.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143680339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A point process on the unit circle with antipodal interactions","authors":"Christophe Charlier","doi":"10.1016/j.jat.2025.106161","DOIUrl":"10.1016/j.jat.2025.106161","url":null,"abstract":"<div><div>We introduce the point process</div><div><span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><msub><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo><</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>|</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>d</mi><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow><mo>,</mo><mspace></mspace><mi>β</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math></span></div><div>where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the normalization constant. This point process is <em>attractive</em>: it involves <span><math><mi>n</mi></math></span> dependent, uniformly distributed random variables on the unit circle that attract each other. (For comparison, the well-studied C<span><math><mi>β</mi></math></span>E involves <span><math><mi>n</mi></math></span> uniformly distributed random variables on the unit circle that repel each other.) We consider linear statistics of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, where <span><math><mrow><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic. We prove that the leading order fluctuations around the mean are of order <span><math><mi>n</mi></math></span> and given by <span><math><mrow><mrow><mo>(</mo><mrow><mi>g</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow><mo>−</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>π</mi></mrow><mrow><mi>π</mi></mrow></msubsup><mi>g</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mfrac><mrow><mi>d</mi><mi>θ</mi></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>n</mi></mrow></math></span>, where <span><math><mrow><mi>U</mi><mo>∼</mo><mi>Uniform</mi><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. We also prove that the subleading fluctuations around the mean are ","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"310 ","pages":"Article 106161"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143577985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}