Orthogonal polynomials on the real line generated by the parameter sequences for a given non-single parameter positive chain sequence

IF 0.9 3区 数学 Q2 MATHEMATICS
Daniel O. Veronese, Glalco S. Costa
{"title":"Orthogonal polynomials on the real line generated by the parameter sequences for a given non-single parameter positive chain sequence","authors":"Daniel O. Veronese,&nbsp;Glalco S. Costa","doi":"10.1016/j.jat.2025.106189","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, given a non-single parameter positive chain sequence <span><math><mrow><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mo>,</mo></mrow></math></span> we use all the non-minimal parameter sequences for <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> in order to generate a whole family of sequences of orthogonal polynomials on the real line. For each non-minimal parameter sequence, the orthogonal polynomials and the associated orthogonality measure are obtained. As an application, corresponding quadratic decompositions are explicitly given. Some examples are considered in order to illustrate the results obtained.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"311 ","pages":"Article 106189"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000474","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, given a non-single parameter positive chain sequence {dn+1}n=1, we use all the non-minimal parameter sequences for {dn+1}n=1 in order to generate a whole family of sequences of orthogonal polynomials on the real line. For each non-minimal parameter sequence, the orthogonal polynomials and the associated orthogonality measure are obtained. As an application, corresponding quadratic decompositions are explicitly given. Some examples are considered in order to illustrate the results obtained.
对于给定的非单参数正链序列,由参数序列生成的实线上的正交多项式
本文给出一个非单参数正链序列{dn+1}n=1∞,利用{dn+1}n=1∞时的所有非极小参数序列,在实线上生成一组正交多项式序列。对于每一个非最小参数序列,得到了正交多项式和相应的正交测度。作为应用,明确给出了相应的二次分解。为了说明所得到的结果,考虑了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信