智慧因子

IF 0.6 3区 数学 Q2 MATHEMATICS
Gökalp Alpan , Turgay Bayraktar , Norm Levenberg
{"title":"智慧因子","authors":"Gökalp Alpan ,&nbsp;Turgay Bayraktar ,&nbsp;Norm Levenberg","doi":"10.1016/j.jat.2025.106227","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the theory of Widom factors to the <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> setting. We define Widom factors of compact subsets <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets <span><math><mrow><mi>K</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a non-polar compact subset of <span><math><mi>ℂ</mi></math></span>, these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions <span><math><mi>w</mi></math></span>; in particular, for the case <span><math><mrow><mi>w</mi><mo>≡</mo><mn>1</mn></mrow></math></span>. Finally, we define the Mahler measure of a multivariate polynomial relative to <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and obtain lower bounds for this quantity on product sets.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106227"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widom factors in ℂn\",\"authors\":\"Gökalp Alpan ,&nbsp;Turgay Bayraktar ,&nbsp;Norm Levenberg\",\"doi\":\"10.1016/j.jat.2025.106227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the theory of Widom factors to the <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> setting. We define Widom factors of compact subsets <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets <span><math><mrow><mi>K</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a non-polar compact subset of <span><math><mi>ℂ</mi></math></span>, these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions <span><math><mi>w</mi></math></span>; in particular, for the case <span><math><mrow><mi>w</mi><mo>≡</mo><mn>1</mn></mrow></math></span>. Finally, we define the Mahler measure of a multivariate polynomial relative to <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and obtain lower bounds for this quantity on product sets.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"313 \",\"pages\":\"Article 106227\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904525000851\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000851","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将智慧因子的理论推广到基于n的集合。我们定义了与多元正交多项式和加权切比雪夫多项式相关的紧子集K∧n的智能因子。我们证明了在n的乘积子集K= k1x⋯×Kn上,其中每个Kj是的非极紧子集,这些量具有直接扩展一维结果的普遍下界。在附加的假设下,每个Kj是实线的一个子集,我们为一些权重函数w提供了改进的智能因子下界;特别地,对于w≡1。最后,我们定义了一个多元多项式相对于K∧n的马勒测度,并得到了这个量在积集上的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Widom factors in ℂn
We generalize the theory of Widom factors to the n setting. We define Widom factors of compact subsets Kn associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets K=K1××Kn of n, where each Kj is a non-polar compact subset of , these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each Kj is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions w; in particular, for the case w1. Finally, we define the Mahler measure of a multivariate polynomial relative to Kn and obtain lower bounds for this quantity on product sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信