{"title":"智慧因子","authors":"Gökalp Alpan , Turgay Bayraktar , Norm Levenberg","doi":"10.1016/j.jat.2025.106227","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the theory of Widom factors to the <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> setting. We define Widom factors of compact subsets <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets <span><math><mrow><mi>K</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a non-polar compact subset of <span><math><mi>ℂ</mi></math></span>, these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions <span><math><mi>w</mi></math></span>; in particular, for the case <span><math><mrow><mi>w</mi><mo>≡</mo><mn>1</mn></mrow></math></span>. Finally, we define the Mahler measure of a multivariate polynomial relative to <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and obtain lower bounds for this quantity on product sets.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"313 ","pages":"Article 106227"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widom factors in ℂn\",\"authors\":\"Gökalp Alpan , Turgay Bayraktar , Norm Levenberg\",\"doi\":\"10.1016/j.jat.2025.106227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the theory of Widom factors to the <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> setting. We define Widom factors of compact subsets <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets <span><math><mrow><mi>K</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a non-polar compact subset of <span><math><mi>ℂ</mi></math></span>, these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions <span><math><mi>w</mi></math></span>; in particular, for the case <span><math><mrow><mi>w</mi><mo>≡</mo><mn>1</mn></mrow></math></span>. Finally, we define the Mahler measure of a multivariate polynomial relative to <span><math><mrow><mi>K</mi><mo>⊂</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and obtain lower bounds for this quantity on product sets.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"313 \",\"pages\":\"Article 106227\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904525000851\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000851","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We generalize the theory of Widom factors to the setting. We define Widom factors of compact subsets associated with multivariate orthogonal polynomials and weighted Chebyshev polynomials. We show that on product subsets of , where each is a non-polar compact subset of , these quantities have universal lower bounds which directly extend one dimensional results. Under the additional assumption that each is a subset of the real line, we provide improved lower bounds for Widom factors for some weight functions ; in particular, for the case . Finally, we define the Mahler measure of a multivariate polynomial relative to and obtain lower bounds for this quantity on product sets.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.