{"title":"比较有约束和无约束三角逼近的程度","authors":"D. Leviatan , I. Shevchuk , V. Shevchuk","doi":"10.1016/j.jat.2025.106220","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. For a continuous <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic function, changing its monotonicity <span><math><mrow><mn>2</mn><mi>s</mi></mrow></math></span> times in a period, and whose degree of approximation by trigonometric polynomials of degree <span><math><mrow><mo><</mo><mi>n</mi></mrow></math></span>, is <span><math><mrow><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we investigate its degree of approximation by such polynomials that, in addition, follow the changes of monotonicity. Obviously, the unconstrained degree is smaller than the constrained one, but for <span><math><mrow><mi>r</mi><mo>></mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>, there is a constant <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> such that the constrained degree is <span><math><mrow><mo>≤</mo><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. On the other hand we show that, in general, this is invalid for <span><math><mrow><mi>r</mi><mo>≤</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"312 ","pages":"Article 106220"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing the degree of constrained and unconstrained trigonometric approximation\",\"authors\":\"D. Leviatan , I. Shevchuk , V. Shevchuk\",\"doi\":\"10.1016/j.jat.2025.106220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. For a continuous <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic function, changing its monotonicity <span><math><mrow><mn>2</mn><mi>s</mi></mrow></math></span> times in a period, and whose degree of approximation by trigonometric polynomials of degree <span><math><mrow><mo><</mo><mi>n</mi></mrow></math></span>, is <span><math><mrow><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we investigate its degree of approximation by such polynomials that, in addition, follow the changes of monotonicity. Obviously, the unconstrained degree is smaller than the constrained one, but for <span><math><mrow><mi>r</mi><mo>></mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>, there is a constant <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> such that the constrained degree is <span><math><mrow><mo>≤</mo><mi>c</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. On the other hand we show that, in general, this is invalid for <span><math><mrow><mi>r</mi><mo>≤</mo><mn>2</mn><mi>s</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"312 \",\"pages\":\"Article 106220\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904525000784\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000784","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Comparing the degree of constrained and unconstrained trigonometric approximation
Let . For a continuous -periodic function, changing its monotonicity times in a period, and whose degree of approximation by trigonometric polynomials of degree , is , , we investigate its degree of approximation by such polynomials that, in addition, follow the changes of monotonicity. Obviously, the unconstrained degree is smaller than the constrained one, but for , there is a constant such that the constrained degree is , . On the other hand we show that, in general, this is invalid for .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.