Jacek Gulgowski , Anna Kamont , Markus Passenbrunner
{"title":"局部正交系统的性质,第二部分:Bernstein不等式的几何表征","authors":"Jacek Gulgowski , Anna Kamont , Markus Passenbrunner","doi":"10.1016/j.jat.2025.106149","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>ℱ</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span> be a probability space and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be a binary filtration. i.e. exactly one atom of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> is divided into <em>two</em> atoms of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by <span><math><mi>A</mi></math></span>. Let <span><math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> be a finite-dimensional linear subspace, having an additional stability property on atoms <span><math><mi>A</mi></math></span>. For these data, we consider two dictionaries: <ul><li><span>•</span><span><div><span><math><mrow><mi>C</mi><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mi>⋅</mi><msub><mrow><mi>1</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><mi>f</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>A</mi><mo>}</mo></mrow></mrow></math></span>,</div></span></li><li><span>•</span><span><div><span><math><mi>Φ</mi></math></span> – a local orthonormal system generated by <span><math><mi>S</mi></math></span> and the filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span>.</div></span></li></ul></div><div>Let <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>C</mi><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>Φ</mi></mrow></math></span>, with <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>. We are interested in approximation spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>Φ</mi><mo>)</mo></mrow></mrow></math></span>, corresponding to the best <span><math><mi>n</mi></math></span>-term approximation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> by elements of <span><math><mi>C</mi></math></span> and <span><math><mi>Φ</mi></math></span>, respectively, where <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>. It is known that in the classical Haar case, i.e. when <span><math><mrow><mi>S</mi><mo>=</mo><mi>span</mi><mrow><mo>(</mo><msub><mrow><mi>1</mi></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the binary filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is dyadic (that is, an atom <span><math><mrow><mi>A</mi><mo>∈</mo><mi>A</mi></mrow></math></span> is divided into two new atoms of equal measure), we have <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>Φ</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, cf. P. Petrushev (2003). This motivates us to ask the question whether this equality is true in the general setting described above. The answer to this question is governed by the validity of a specific Bernstein type inequality <span><math><mrow><mo>BI</mo><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, with parameters <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>, <span><math><mrow><mn>0</mn><mo><</mo><mi>τ</mi><mo><</mo><mi>p</mi></mrow></math></span>.</div><div>The main result of this paper is a geometric characterization of this type of Bernstein inequality <span><math><mrow><mo>BI</mo><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, i.e. a characterization in terms of the behavior of functions from the space <span><math><mi>S</mi></math></span> on atoms <span><math><mi>A</mi></math></span> and rings <span><math><mrow><mi>ℛ</mi><mo>=</mo><mrow><mo>{</mo><mi>A</mi><mo>∖</mo><mi>B</mi><mo>:</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊂</mo><mi>A</mi><mo>}</mo></mrow><mo>∖</mo><mi>A</mi></mrow></math></span>. We specialize this general result to some examples of interest, including general Haar systems and spaces <span><math><mi>S</mi></math></span> consisting of (multivariate) polynomials.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106149"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities\",\"authors\":\"Jacek Gulgowski , Anna Kamont , Markus Passenbrunner\",\"doi\":\"10.1016/j.jat.2025.106149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>ℱ</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span> be a probability space and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be a binary filtration. i.e. exactly one atom of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> is divided into <em>two</em> atoms of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by <span><math><mi>A</mi></math></span>. Let <span><math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> be a finite-dimensional linear subspace, having an additional stability property on atoms <span><math><mi>A</mi></math></span>. For these data, we consider two dictionaries: <ul><li><span>•</span><span><div><span><math><mrow><mi>C</mi><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mi>⋅</mi><msub><mrow><mi>1</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><mi>f</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>A</mi><mo>}</mo></mrow></mrow></math></span>,</div></span></li><li><span>•</span><span><div><span><math><mi>Φ</mi></math></span> – a local orthonormal system generated by <span><math><mi>S</mi></math></span> and the filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span>.</div></span></li></ul></div><div>Let <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>C</mi><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>Φ</mi></mrow></math></span>, with <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>. We are interested in approximation spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>Φ</mi><mo>)</mo></mrow></mrow></math></span>, corresponding to the best <span><math><mi>n</mi></math></span>-term approximation in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> by elements of <span><math><mi>C</mi></math></span> and <span><math><mi>Φ</mi></math></span>, respectively, where <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>. It is known that in the classical Haar case, i.e. when <span><math><mrow><mi>S</mi><mo>=</mo><mi>span</mi><mrow><mo>(</mo><msub><mrow><mi>1</mi></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the binary filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is dyadic (that is, an atom <span><math><mrow><mi>A</mi><mo>∈</mo><mi>A</mi></mrow></math></span> is divided into two new atoms of equal measure), we have <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>Φ</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span>, cf. P. Petrushev (2003). This motivates us to ask the question whether this equality is true in the general setting described above. The answer to this question is governed by the validity of a specific Bernstein type inequality <span><math><mrow><mo>BI</mo><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, with parameters <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>, <span><math><mrow><mn>0</mn><mo><</mo><mi>τ</mi><mo><</mo><mi>p</mi></mrow></math></span>.</div><div>The main result of this paper is a geometric characterization of this type of Bernstein inequality <span><math><mrow><mo>BI</mo><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, i.e. a characterization in terms of the behavior of functions from the space <span><math><mi>S</mi></math></span> on atoms <span><math><mi>A</mi></math></span> and rings <span><math><mrow><mi>ℛ</mi><mo>=</mo><mrow><mo>{</mo><mi>A</mi><mo>∖</mo><mi>B</mi><mo>:</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊂</mo><mi>A</mi><mo>}</mo></mrow><mo>∖</mo><mi>A</mi></mrow></math></span>. We specialize this general result to some examples of interest, including general Haar systems and spaces <span><math><mi>S</mi></math></span> consisting of (multivariate) polynomials.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"308 \",\"pages\":\"Article 106149\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904525000073\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000073","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设(Ω,,P)是一个概率空间,设(n)n=0∞是一个二元滤波。即,精确地将一个原子(n−1)分成两个原子(n−1)而不限制它们各自的度量。另外,用a表示与此过滤对应的原子集合。设S∧L∞(Ω)是一个有限维线性子空间,在原子a上具有额外的稳定性。对于这些数据,我们考虑两个字典:•C={f⋅1A:f∈S, a∈a},•Φ—一个由S生成的局部正交系统和过滤(n)n=0∞。让Lp (S) =¯Lp(Ω)C =跨¯Lp(Ω)Φ1 & lt;术中;∞。我们对近似空间Aqα(Lp(S),C)和Aqα(Lp(S),Φ)感兴趣,它们分别对应于C和Φ的元素在Lp(S)中的最佳n项近似,其中α>;0和0<;q≤∞。已知在经典Haar情况下,即当S=span(1[0,1])且二元滤除(n)n=0∞是二进的(即原子A∈A被分成两个新的等测度原子),我们有Aqα(Lp(S),Φ)=Aqα(Lp(S),C), cf. P. Petrushev(2003)。这促使我们问这样一个问题:在上述的一般情况下,这个等式是否成立?这个问题的答案取决于一个特定的Bernstein型不等式BI(a,S,p,τ)的有效性,其参数为1<;p<∞,0<τ<p。本文的主要结果是该类Bernstein不等式BI(a,S,p,τ)的一个几何刻划,即关于原子a和环上空间S上的函数的行为的一个刻划={a∈B: a,B∈a,B∧a}} a。我们将这个一般结果专门用于一些感兴趣的例子,包括一般Haar系统和由(多元)多项式组成的空间S。
Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities
Let be a probability space and let be a binary filtration. i.e. exactly one atom of is divided into two atoms of without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by . Let be a finite-dimensional linear subspace, having an additional stability property on atoms . For these data, we consider two dictionaries:
•
,
•
– a local orthonormal system generated by and the filtration .
Let , with . We are interested in approximation spaces and , corresponding to the best -term approximation in by elements of and , respectively, where and . It is known that in the classical Haar case, i.e. when and the binary filtration is dyadic (that is, an atom is divided into two new atoms of equal measure), we have , cf. P. Petrushev (2003). This motivates us to ask the question whether this equality is true in the general setting described above. The answer to this question is governed by the validity of a specific Bernstein type inequality , with parameters , .
The main result of this paper is a geometric characterization of this type of Bernstein inequality , i.e. a characterization in terms of the behavior of functions from the space on atoms and rings . We specialize this general result to some examples of interest, including general Haar systems and spaces consisting of (multivariate) polynomials.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.