{"title":"Pseudo s-numbers of embeddings of Gaussian weighted Sobolev spaces","authors":"Van Kien Nguyen","doi":"10.1016/j.jat.2025.106159","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the approximation problem for functions in the Gaussian-weighted Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> of mixed smoothness <span><math><mrow><mi>α</mi><mo>∈</mo><mi>N</mi></mrow></math></span> with error measured in the Gaussian-weighted space <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span>. We obtain the exact asymptotic order of some pseudo <span><math><mi>s</mi></math></span>-numbers for the cases <span><math><mrow><mn>1</mn><mo>≤</mo><mi>q</mi><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mn>2</mn></mrow></math></span>. Additionally, we also obtain an upper bound and a lower bound for some pseudo <span><math><mi>s</mi></math></span>-numbers of the embedding of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> into <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow><mrow><msqrt><mrow><mi>g</mi></mrow></msqrt></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Our result is an extension of that obtained in Dinh Dũng and Van Kien Nguyen (IMA Journal of Numerical Analysis, 2023) for approximation and Kolmogorov numbers.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106159"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904525000176","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the approximation problem for functions in the Gaussian-weighted Sobolev space of mixed smoothness with error measured in the Gaussian-weighted space . We obtain the exact asymptotic order of some pseudo -numbers for the cases and . Additionally, we also obtain an upper bound and a lower bound for some pseudo -numbers of the embedding of into . Our result is an extension of that obtained in Dinh Dũng and Van Kien Nguyen (IMA Journal of Numerical Analysis, 2023) for approximation and Kolmogorov numbers.
本文研究了混合光滑性α∈N的高斯加权Sobolev空间Wpα(Rd,γ)中函数的近似问题,其误差在高斯加权空间Lq(Rd,γ)中测量。在1≤q<;p<;∞且p=q=2的情况下,我们得到了一些伪s数的精确渐近阶。此外,我们还得到了W2α(Rd,γ)嵌入L∞g(Rd)的一些伪s数的上界和下界。我们的结果是Dinh Dũng和Van Kien Nguyen (IMA Journal of Numerical Analysis, 2023)关于近似和Kolmogorov数所得结果的推广。
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.