Journal of Approximation Theory最新文献

筛选
英文 中文
Chebyshev polynomials corresponding to a vanishing weight 与消失权重相对应的切比雪夫多项式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-05-02 DOI: 10.1016/j.jat.2024.106048
Alex Bergman, Olof Rubin
{"title":"Chebyshev polynomials corresponding to a vanishing weight","authors":"Alex Bergman,&nbsp;Olof Rubin","doi":"10.1016/j.jat.2024.106048","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106048","url":null,"abstract":"<div><p>We consider weighted Chebyshev polynomials on the unit circle corresponding to a weight of the form <span><math><msup><mrow><mrow><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> where <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. For integer values of <span><math><mi>s</mi></math></span> this corresponds to prescribing a zero of the polynomial on the boundary. As such, we extend findings of Lachance et al. (1979), to non-integer <span><math><mi>s</mi></math></span>. Using this generalisation, we are able to relate Chebyshev polynomials on lemniscates and other, more established, categories of Chebyshev polynomials. An essential part of our proof involves the broadening of the Erdős–Lax inequality to encompass powers of polynomials. We believe that this particular result holds significance in its own right.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000340/pdfft?md5=69221809242b1dccb0aa329cd8cfc72b&pid=1-s2.0-S0021904524000340-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kolmogorov widths of an intersection of a family of balls in a mixed norm 混合规范中球族交点的科尔莫格罗夫宽度
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-27 DOI: 10.1016/j.jat.2024.106046
A.A. Vasil’eva
{"title":"Kolmogorov widths of an intersection of a family of balls in a mixed norm","authors":"A.A. Vasil’eva","doi":"10.1016/j.jat.2024.106046","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106046","url":null,"abstract":"<div><p>In this paper, order estimates for the Kolmogorov <span><math><mi>n</mi></math></span>-widths of an intersection of a family of balls in a mixed norm in the space <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>k</mi></mrow></msubsup></math></span> with <span><math><mrow><mn>2</mn><mo>⩽</mo><mi>q</mi><mo>,</mo><mspace></mspace><mi>σ</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>⩽</mo><mi>m</mi><mi>k</mi><mo>/</mo><mn>2</mn></mrow></math></span> are obtained.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some aspects of the Bergman and Hardy spaces associated with a class of generalized analytic functions 与一类广义解析函数相关的伯格曼和哈代空间的某些方面
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-27 DOI: 10.1016/j.jat.2024.106044
Zhongkai Li , Haihua Wei
{"title":"Some aspects of the Bergman and Hardy spaces associated with a class of generalized analytic functions","authors":"Zhongkai Li ,&nbsp;Haihua Wei","doi":"10.1016/j.jat.2024.106044","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106044","url":null,"abstract":"<div><p>For <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> function <span><math><mi>f</mi></math></span> defined on the unit disk <span><math><mi>D</mi></math></span> is said to be <span><math><mi>λ</mi></math></span>-analytic if <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mi>f</mi><mo>=</mo><mn>0</mn></mrow></math></span>, where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub></math></span> is the (complex) Dunkl operator given by <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mi>f</mi><mo>=</mo><msub><mrow><mi>∂</mi></mrow><mrow><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mi>f</mi><mo>−</mo><mi>λ</mi><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>z</mi><mo>−</mo><mover><mrow><mi>z</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>. The aim of the paper is to study several problems on the associated Bergman spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and Hardy spaces <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>p</mi><mo>≥</mo><mn>2</mn><mi>λ</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>λ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, such as boundedness of the Bergman projection, growth of functions, density, completeness, and the dual spaces of <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, and characterization and interpolation of <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The alternating simultaneous Halpern–Lions–Wittmann–Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets 为两个不相交的凸集寻找最佳近似对的交替同步 Halpern-Lions-Wittmann-Bauschke 算法
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-27 DOI: 10.1016/j.jat.2024.106045
Yair Censor, Rafiq Mansour , Daniel Reem
{"title":"The alternating simultaneous Halpern–Lions–Wittmann–Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets","authors":"Yair Censor,&nbsp;Rafiq Mansour ,&nbsp;Daniel Reem","doi":"10.1016/j.jat.2024.106045","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106045","url":null,"abstract":"<div><p>Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process is inspired by the Halpern–Lions–Wittmann–Bauschke algorithm and the classical alternating process of Cheney and Goldstein, and its advantage is that there is no need to project onto the intersections themselves, a task which can be rather demanding. We prove that under certain conditions the two interlaced subsequences converge to a best approximation pair. These conditions hold, in particular, when the space is Euclidean and the subsets which generate the intersections are compact and strictly convex. Our result extends the one of Aharoni, Censor and Jiang [“Finding a best approximation pair of points for two polyhedra”, Computational Optimization and Applications 71 (2018), 509–23] who considered the case of finite-dimensional polyhedra.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex spherical designs from group orbits 来自群轨道的复杂球形设计
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-27 DOI: 10.1016/j.jat.2024.106047
Mozhgan Mohammadpour, Shayne Waldron
{"title":"Complex spherical designs from group orbits","authors":"Mozhgan Mohammadpour,&nbsp;Shayne Waldron","doi":"10.1016/j.jat.2024.106047","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106047","url":null,"abstract":"<div><p>We consider the general question of when all orbits under the unitary action of a finite group give a complex spherical design. Those orbits which have large stabilisers are then good candidates for being optimal complex spherical designs. This is done by developing the general theory of complex designs and associated (harmonic) Molien series for group actions. As an application, we give explicit constructions of some putatively optimal real and complex spherical <span><math><mi>t</mi></math></span>-designs.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000339/pdfft?md5=219ecf58a623a8cc1c9ad8954bcd36ab&pid=1-s2.0-S0021904524000339-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral decomposition of H1(μ) and Poincaré inequality on a compact interval — Application to kernel quadrature 紧凑区间上 H1(μ) 的谱分解和 Poincaré 不等式 - 核正交的应用
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-09 DOI: 10.1016/j.jat.2024.106041
Olivier Roustant , Nora Lüthen , Fabrice Gamboa
{"title":"Spectral decomposition of H1(μ) and Poincaré inequality on a compact interval — Application to kernel quadrature","authors":"Olivier Roustant ,&nbsp;Nora Lüthen ,&nbsp;Fabrice Gamboa","doi":"10.1016/j.jat.2024.106041","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106041","url":null,"abstract":"<div><p>Motivated by uncertainty quantification of complex systems, we aim at finding quadrature formulas of the form <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>f</mi></math></span> belongs to <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span>. Here, <span><math><mi>μ</mi></math></span> belongs to a class of continuous probability distributions on <span><math><mrow><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>⊂</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></mrow></math></span> is a discrete probability distribution on <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. We show that <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span> is a reproducing kernel Hilbert space with a continuous kernel <span><math><mi>K</mi></math></span>, which allows to reformulate the quadrature question as a kernel (or Bayesian) quadrature problem. Although <span><math><mi>K</mi></math></span> has not an easy closed form in general, we establish a correspondence between its spectral decomposition and the one associated to Poincaré inequalities, whose common eigenfunctions form a <span><math><mi>T</mi></math></span>-system (Karlin and Studden, 1966). The quadrature problem can then be solved in the finite-dimensional proxy space spanned by the first eigenfunctions. The solution is given by a generalized Gaussian quadrature, which we call Poincaré quadrature.</p><p>We derive several results for the Poincaré quadrature weights and the associated worst-case error. When <span><math><mi>μ</mi></math></span> is the uniform distribution, the results are explicit: the Poincaré quadrature is equivalent to the midpoint (rectangle) quadrature rule. Its nodes coincide with the zeros of an eigenfunction and the worst-case error scales as <span><math><mrow><mfrac><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow><mrow><mn>2</mn><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for lar","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Log-concavity of B-splines B 样条的对数凹性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-04 DOI: 10.1016/j.jat.2024.106042
Michael S. Floater
{"title":"Log-concavity of B-splines","authors":"Michael S. Floater","doi":"10.1016/j.jat.2024.106042","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106042","url":null,"abstract":"<div><p>Curry and Schoenberg showed that a B-spline is log-concave in its support by applying Brunn’s theorem to a simplex. In this note we provide an alternative, ‘analytic’ proof of the log-concave property using only recursion formulas for B-splines and their first and second derivatives.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000285/pdfft?md5=e7cbce1cee37c3e76009eab70b3d59a1&pid=1-s2.0-S0021904524000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted estimates for Hermite pseudo-multipliers with rough symbols 带有粗糙符号的赫尔墨特伪乘法器的加权估计值
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-04 DOI: 10.1016/j.jat.2024.106043
Fu Ken Ly
{"title":"Weighted estimates for Hermite pseudo-multipliers with rough symbols","authors":"Fu Ken Ly","doi":"10.1016/j.jat.2024.106043","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106043","url":null,"abstract":"<div><p>We introduce a class of rough symbols for pseudo-multipliers for Hermite expansions and obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> estimates. These symbols generalise the class of rough symbols introduced by Kenig–Staubach.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000297/pdfft?md5=fa08028486fb2973a12d793b81945cd7&pid=1-s2.0-S0021904524000297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear approximation of high-dimensional anisotropic analytic functions 高维各向异性分析函数的非线性逼近
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-03-13 DOI: 10.1016/j.jat.2024.106040
Diane Guignard , Peter Jantsch
{"title":"Nonlinear approximation of high-dimensional anisotropic analytic functions","authors":"Diane Guignard ,&nbsp;Peter Jantsch","doi":"10.1016/j.jat.2024.106040","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106040","url":null,"abstract":"<div><p>Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest by a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain <span><math><mrow><mi>Y</mi><mo>≔</mo><msup><mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al., 2021 <span>[4]</span>) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity, namely the class introduced in Bonito et al. (2021) <span>[5]</span>. In this way we show both where the theory developed in Bonito et al. (2021) <span>[4]</span> depends on being in the setting of parametric PDEs with affine diffusion coefficients, and prove a more general result outside of this setting.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000261/pdfft?md5=37c84e9e2faa6a5470ebb676b660de8f&pid=1-s2.0-S0021904524000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet characterization of exponentially weighted Besov space with dominating mixed smoothness and its application to function approximation 具有支配性混合平滑的指数加权贝索夫空间的小波特征及其在函数逼近中的应用
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-03-11 DOI: 10.1016/j.jat.2024.106037
Yoshihiro Kogure, Ken’ichiro Tanaka
{"title":"Wavelet characterization of exponentially weighted Besov space with dominating mixed smoothness and its application to function approximation","authors":"Yoshihiro Kogure,&nbsp;Ken’ichiro Tanaka","doi":"10.1016/j.jat.2024.106037","DOIUrl":"10.1016/j.jat.2024.106037","url":null,"abstract":"<div><p>Although numerous studies have focused on normal Besov spaces, limited studies have been conducted on exponentially weighted Besov spaces. Therefore, we define exponentially weighted Besov space <span><math><mrow><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>δ</mi><mo>,</mo><mi>w</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> whose smoothness includes normal Besov spaces, Besov spaces with dominating mixed smoothness, and their interpolation. Furthermore, we obtain wavelet characterization of <span><math><mrow><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>δ</mi><mo>,</mo><mi>w</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Next, approximation formulas such as sparse grids are derived using the determined formula. The results of this study are expected to provide considerable insight into the application of exponentially weighted Besov spaces with mixed smoothness.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信