Bounds for extreme zeros of Meixner–Pollaczek polynomials

IF 0.9 3区 数学 Q2 MATHEMATICS
A.S. Jooste , K. Jordaan
{"title":"Bounds for extreme zeros of Meixner–Pollaczek polynomials","authors":"A.S. Jooste ,&nbsp;K. Jordaan","doi":"10.1016/j.jat.2024.106142","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider connection formulae for orthogonal polynomials in the context of Christoffel transformations for the case where a weight function, not necessarily even, is multiplied by an even function <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>k</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, to determine new lower bounds for the largest zero and upper bounds for the smallest zero of a Meixner–Pollaczek polynomial. When <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is orthogonal with respect to a weight <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></math></span> is orthogonal with respect to the weight <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, we show that <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>}</mo></mrow></mrow></math></span> is a necessary and sufficient condition for existence of a connection formula involving a polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of degree <span><math><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>, such that the <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> zeros of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></mrow></math></span> and the <span><math><mi>n</mi></math></span> zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> interlace. We analyse the new inner bounds for the extreme zeros of Meixner–Pollaczek polynomials to determine which bounds are the sharpest. We also briefly discuss bounds for the zeros of Pseudo-Jacobi polynomials.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"307 ","pages":"Article 106142"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524001308","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider connection formulae for orthogonal polynomials in the context of Christoffel transformations for the case where a weight function, not necessarily even, is multiplied by an even function c2k(x),kN0, to determine new lower bounds for the largest zero and upper bounds for the smallest zero of a Meixner–Pollaczek polynomial. When pn is orthogonal with respect to a weight w(x) and gnm is orthogonal with respect to the weight c2k(x)w(x), we show that k{0,1,,m} is a necessary and sufficient condition for existence of a connection formula involving a polynomial Gm1 of degree (m1), such that the (n1) zeros of Gm1gnm and the n zeros of pn interlace. We analyse the new inner bounds for the extreme zeros of Meixner–Pollaczek polynomials to determine which bounds are the sharpest. We also briefly discuss bounds for the zeros of Pseudo-Jacobi polynomials.
mexner - pollaczek多项式极值零点的界
本文考虑了权函数(不一定是偶函数)与偶函数c2k(x) k∈N0相乘时正交多项式在Christoffel变换下的连接公式,以确定mexner - pollaczek多项式的最大零的新下界和最小零的新上界。当pn与权值w(x)正交且gn−m与权值c2k(x)w(x)正交时,我们证明了k∈{0,1,…,m}是一个包含(m−1)次多项式Gm−1的连接公式存在的充分必要条件,使得Gm−1gn−m的(n−1)个零点与pn的n个零点相交。我们分析了mexner - pollaczek多项式的极值零点的新内界,以确定哪个边界是最尖锐的。我们还简要讨论了伪雅可比多项式的零点界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信