{"title":"Bounds for extreme zeros of Meixner–Pollaczek polynomials","authors":"A.S. Jooste , K. Jordaan","doi":"10.1016/j.jat.2024.106142","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider connection formulae for orthogonal polynomials in the context of Christoffel transformations for the case where a weight function, not necessarily even, is multiplied by an even function <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>k</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, to determine new lower bounds for the largest zero and upper bounds for the smallest zero of a Meixner–Pollaczek polynomial. When <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is orthogonal with respect to a weight <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></math></span> is orthogonal with respect to the weight <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, we show that <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>}</mo></mrow></mrow></math></span> is a necessary and sufficient condition for existence of a connection formula involving a polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of degree <span><math><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>, such that the <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> zeros of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></msub></mrow></math></span> and the <span><math><mi>n</mi></math></span> zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> interlace. We analyse the new inner bounds for the extreme zeros of Meixner–Pollaczek polynomials to determine which bounds are the sharpest. We also briefly discuss bounds for the zeros of Pseudo-Jacobi polynomials.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"307 ","pages":"Article 106142"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524001308","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider connection formulae for orthogonal polynomials in the context of Christoffel transformations for the case where a weight function, not necessarily even, is multiplied by an even function , to determine new lower bounds for the largest zero and upper bounds for the smallest zero of a Meixner–Pollaczek polynomial. When is orthogonal with respect to a weight and is orthogonal with respect to the weight , we show that is a necessary and sufficient condition for existence of a connection formula involving a polynomial of degree , such that the zeros of and the zeros of interlace. We analyse the new inner bounds for the extreme zeros of Meixner–Pollaczek polynomials to determine which bounds are the sharpest. We also briefly discuss bounds for the zeros of Pseudo-Jacobi polynomials.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.