Sobolev空间中平移不变子空间的同时密度阶

IF 0.9 3区 数学 Q2 MATHEMATICS
Ch. Boukeffous , A. San Antolín
{"title":"Sobolev空间中平移不变子空间的同时密度阶","authors":"Ch. Boukeffous ,&nbsp;A. San Antolín","doi":"10.1016/j.jat.2025.106147","DOIUrl":null,"url":null,"abstract":"<div><div>The notion of simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> from shift-invariant subspaces in Sobolev spaces was introduced in the paper by Zhao (1995). Moreover, a characterization of those principal shift-invariant subspaces that provide simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> was proved there. In this note, we prove another characterization using dilated by some adequate expansive linear maps of a shift-invariant subspace. In addition, we introduce the notion of simultaneous density order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and give necessary and sufficient conditions on a shift-invariant subspace to have a simultaneous density desired. To give our conditions, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of the generators of a shift-invariant subspace. For this, we will use the classical notion of approximate continuity.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106147"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On simultaneous density order from shift invariant subspaces in Sobolev spaces\",\"authors\":\"Ch. Boukeffous ,&nbsp;A. San Antolín\",\"doi\":\"10.1016/j.jat.2025.106147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The notion of simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> from shift-invariant subspaces in Sobolev spaces was introduced in the paper by Zhao (1995). Moreover, a characterization of those principal shift-invariant subspaces that provide simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> was proved there. In this note, we prove another characterization using dilated by some adequate expansive linear maps of a shift-invariant subspace. In addition, we introduce the notion of simultaneous density order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and give necessary and sufficient conditions on a shift-invariant subspace to have a simultaneous density desired. To give our conditions, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of the generators of a shift-invariant subspace. For this, we will use the classical notion of approximate continuity.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"308 \",\"pages\":\"Article 106147\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452500005X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452500005X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Zhao(1995)在Sobolev空间中的移不变子空间中引入了同时逼近阶(m,k)的概念。此外,还证明了同时提供近似阶(m,k)的主移不变子空间的一个性质。在这篇笔记中,我们证明了另一个用平移不变子空间的一些适当的扩展线性映射展开的表征。此外,我们引入了同时密度阶(m,k)的概念,并给出了平移不变子空间具有期望同时密度的充分必要条件。为了给出我们的条件,我们将解释平移不变子空间的产生子的傅里叶变换在原点的邻域上的行为。为此,我们将使用经典的近似连续性概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On simultaneous density order from shift invariant subspaces in Sobolev spaces
The notion of simultaneous approximation order (m,k) from shift-invariant subspaces in Sobolev spaces was introduced in the paper by Zhao (1995). Moreover, a characterization of those principal shift-invariant subspaces that provide simultaneous approximation order (m,k) was proved there. In this note, we prove another characterization using dilated by some adequate expansive linear maps of a shift-invariant subspace. In addition, we introduce the notion of simultaneous density order (m,k) and give necessary and sufficient conditions on a shift-invariant subspace to have a simultaneous density desired. To give our conditions, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of the generators of a shift-invariant subspace. For this, we will use the classical notion of approximate continuity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信